Development of a Virus Elution and Concentration Procedure for Detecting Norovirus in Oysters

  • Ha, Sook-Hee (Department of Biotechnology, Dongguk University) ;
  • Woo, Gun-Jo (Division of Food Bioscience & Technology, Korea University) ;
  • Hwang, In-Gyun (Food Microbiology Division, Korea Food & Drug Administration) ;
  • Choi, Weon-Sang (Department of Biotechnology, Dongguk University)
  • Published : 2009.10.31

Abstract

Low levels of virus contamination and naturally occurring reverse transcription-polymerase chain reaction (RT-PCR) inhibitors restrain virus detection in oysters. A rapid and efficient oyster-processing procedure that can be used for sensitive virus detection in oysters was developed. Poliovirus type 1 Sabin strain was used to evaluate the efficacy of virus recovery. The procedure included (a) acid-adsorption and elution with buffers (0.25M glycine-0.14 M NaCl, pH 7.5; 0.25M threonine-0.14M NaCl, pH 7.5); (b) polyethylene glycol (PEG) precipitation; (c) resuspension in Tween 80/Tris solution and chloroform extraction; (d) the second PEG precipitation; (e) viral RNA extraction with TRIzol and isopropanol precipitation; and (f) RT-PCR combined with semi-nested PCR. The overall recovery of elution/concentration was 19.5% with poliovirus. The whole procedure usually takes 19 hr. The overall detection sensitivity was 4 RT-PCR units of genogroup I norovirus (NoV) and 6.4 RT-PCR units of genogroup II Nov/25 g of oysters initially seeded. The virus-detecting method developed in this study should facilitate the detection of low levels of NoV in oysters.

Keywords

References

  1. Koopmans M, Duizer E. Foodborne viruses: An emerging problem. Int. J. Food Microbiol. 90: 23-41 (2004) https://doi.org/10.1016/S0168-1605(03)00169-7
  2. Sair AI, D'Souza DH, Jaykus L. Human enteric viruses as causes of foodborne disease. Compr. Rev. Food Sci. F. 1: 73-89 (2002) https://doi.org/10.1111/j.1541-4337.2002.tb00008.x
  3. Guevremont E, Brassard J, Houde A, Simard C, Trottier Y. Development of an extraction and concentration procedure and comparison of RT-PCR primer systems for the detection of hepatitis A virus and norovirus GII in green onions. J. Virol. Methods 134: 130-135 (2006) https://doi.org/10.1016/j.jviromet.2005.12.009
  4. Kageyama T, Shinohara M, Uchida K, Fukushi S, Hoshino FB, Kojima S, Takai R, Oka T, Takeda N, Katayama K. Coexistence of multiple genotypes, including newly identified genotypes, in outbreaks of gastroenteritis due to norovirus in Japan. J. Clin. Microbiol. 42: 2988-2905 (2004) https://doi.org/10.1128/JCM.42.7.2988-2995.2004
  5. Wang Q, Costantini V, Saif LJ. Porcine enteric caliciviruses: Genetic and antigenic relatedness to human caliciviruses, diagnosis, and epidemiology. Vaccine 25: 5453-5466 (2007) https://doi.org/10.1016/j.vaccine.2006.12.032
  6. Ha S, Woo G, Kwak H, Hwang I, Choi WS. Simplified procedure for detection of poliovirus and norovirus in oysters. Korean J. Food Sci. Technol. 37: 1018-1023 (2005)
  7. Shieh YC, Calci KR, Baric RS. A method to detect low levels of enteric viruses in contaminated oysters. Appl. Environ. Microb. 65: 4709-4714 (1999)
  8. Mullendore JL, Sobsey MD, Shieh YC. Improved method for the recovery of hepatitis A virus from oysters. J. Virol. Methods 94: 25- 35 (2001) https://doi.org/10.1016/S0166-0934(01)00263-4
  9. Atmar RL, Metcalf TG, Neil FH, Estes MK. Detection of enteric viruses in oysters by using the polymerase chain reaction. Appl. Environ. Microb. 59: 631-635 (1993)
  10. Jaykus LA, De Leon R, Sobsey MD. A virion concentration method for detection of human enteric viruses in oysters by PCR and oligoprobe hybridization. Appl. Environ. Microb. 62: 2074-2080 (1996)
  11. Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, Quay J, Kew O. Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J. Virol. 80: 3259-3272 (2006) https://doi.org/10.1128/JVI.80.7.3259-3272.2006
  12. Atmar RL, Neill FH, Romalde JL, Guyader FL, Woodley CM, Metcalf TG, Estes MK. Detection of Norwalk virus and hepatitis A virus in shellfish tissues with the PCR. Appl. Environ. Microb. 61: 3014-3018 (1995)
  13. Moon A, Hwang I, Choi WS. Development of virus elution and concentration procedure for detecting norovirus in cabbage and lettuce. Food Sci. Biotechnol. 18: 407-412 (2009)
  14. Jee Y. Establishment of detection method for norovirus. Part II. Technical Report. p. 20. Korea Food & Drug Administration, Seoul, Korea (2006)
  15. Shieh YC, Baric RS, Sobsey MD. Detection of low levels of enteric viruses in metropolitan and airplane sewage. Appl. Environ. Microb. 63: 4401-4407 (1997)
  16. Love DC, Casteel MJ, Meschke JS, Sobsey MD. Methods for recovery of hepatitis A virus (HAV) and other viruses from processed foods and detection of HAV by nested RT-PCR and TaqMan RT-PCR. Int. J. Food Microbiol. 124: 221-226 (2008)
  17. Dubois E, Hennechart C, Ghislaine M, Burger C, Hmila N, Ruelle S, Perelle S, Ferrç V. Detection and quantification by real-time RTPCR of hepatitis A virus from inoculated tap waters, salad vegetables, and soft fruits: Characterization of the method performances. Int. J. Food Microbiol. 117: 141-149 (2007) https://doi.org/10.1016/j.ijfoodmicro.2007.02.026
  18. Dubois E, Hennechart C, Deboos$\grave{e}$re N, Merle G, Legeay O, Burger C, Le Calv$\ddot{e}$ M, Lombard B, Ferr$\ddot{e}$ V, Traor$\ddot{e}$ O. Intra-laboratory validation of a concentration adapted for the enumeration of infectious F-specific RNA coliphage, enterovirus, and hepatitis A virus from inoculated leaves of salad vegetables. Int J. Food Microbiol. 108: 164-171 (2006) https://doi.org/10.1016/j.ijfoodmicro.2005.11.007
  19. Dubois E, Agier C, Traor$\ddot{e}$ O, Hennechart C, Merle G, Cruciere C, Laveran H. Modified concentration method for the detection of enteric viruses on fruits and vegetables by reverse transcriptasepolymerase chain reaction or cell culture. J. Food Protect. 65: 1962- 1969 (2002)
  20. Kingsley DH, Richards GP. Rapid and efficient extraction methods for reverse transcription-PCR detection of hepatitis A and Norwalklike viruses in shellfish. Appl. Environ. Microb. 67: 4152-4157 (2001) https://doi.org/10.1128/AEM.67.9.4152-4157.2001
  21. Shieh YC, Baric RS, Woods JW, Calci KR. Molecular surveillance of enterovirus and Norwalk-like virus in oysters relocated to a municipal-sewage-impacted gulf estuary. Appl. Environ. Microb. 69: 7130-7136 (2003) https://doi.org/10.1128/AEM.69.12.7130-7136.2003
  22. Loisy F, Atmar RL, Guillon P, Le Cann P, Pommepuy M, Le Guyader FS. Real-time RT-PCR for norovirus screening in shellfish. J. Virol. Methods 123: 1-7 (2005) https://doi.org/10.1016/j.jviromet.2004.08.023
  23. Le Guyader FS, Schultz A, Haugarreau L, Croci L, Manula L, Duizer E, Lodder-Verschoor F, von Bonsdorff C, Suffredin E, van der Poel WMM, Reymundo R, Koopmans M. Round-robin comparison of the methods for the detection of human enteric viruses in lettuce. J. Food Protect. 67: 2315-2319 (2004)
  24. Schwab KJ, Neill FH, Le Guyader F, Estes MK, Atmar RL. Development of a reverse transcription-PCR-DNA enzyme immunoassay for detection of 'Norwalk-like' viruses and hepatitis A virus in stool and shellfish. Appl. Environ. Microb. 67: 742-749 (2001) https://doi.org/10.1128/AEM.67.2.742-749.2001
  25. Le Guyader FS, Neill FH, Dubois E, Bon F, Loisy F, Kohli E, Pommepuy M, Atmar RL. A semiquantitative approach to estimate Norwalk-like virus contamination of oysters implicated in an outbreak. Int. J. Food Microbiol. 87: 107-112 (2003) https://doi.org/10.1016/S0168-1605(03)00058-8
  26. Kingsley DH. An RNA extraction protocol for shellfish-borne viruses. J. Virol. Methods 141: 58-62 (2007) https://doi.org/10.1016/j.jviromet.2006.11.027
  27. Pang X, Lee B, Chui L, Preiksaitis JK, Monroe SS. Evaluation and validation of real-time RT-PCR assay using the light cycler system for detection and quantitation of norovirus. J. Clin. Microbiol. 42: 4679-4685 (2004) https://doi.org/10.1128/JCM.42.10.4679-4685.2004
  28. Jothikumar N, Lowther JA, Hensilwood K, Lees DN, Hill VR, Vinjç J. Rapid and sensitive detection of noroviruses by using TaqMan-based one-step RT-PCR assays and application to naturally contaminated shellfish samples. Appl. Environ. Microb. 71: 1870- 1875 (2005) https://doi.org/10.1128/AEM.71.4.1870-1875.2005
  29. Mohamed N, Belak S, Hedlund K, Blomberg J. Evidence from the development of a diagnostic single tube real-time PCR for human caliciviruses, norovirus genogroups I and II. J. Virol. Methods 132: 69-76 (2006) https://doi.org/10.1016/j.jviromet.2005.09.006
  30. Dreier J, Stormer M, Mãde D, Burkhardt S, Kleesier K. Enhanced reverse transcription-PCR assay for detection of norovirus genogroup I. J. Clin. Microbiol. 44: 2714-2720 (2006) https://doi.org/10.1128/JCM.00443-06
  31. Trujillo AA, McCaustland KA, Zheng D, Hadley LA, Vaughn G, Adams SM, Ando T, Glass RI, Monroe SS. Use of TaqMan realtime RT-PCR for rapid detection, quantification, and typing of norovirus. J. Clin. Microbiol. 44: 1405-1412 (2006) https://doi.org/10.1128/JCM.44.4.1405-1412.2006
  32. Hymas W, Atkinson A, Stevenson J, Hillyard D. Use of modified oligonucleotides to compensate for sequence polymorphisms in the real-time detection of norovirus. J. Virol. Methods 142: 10-14 (2007) https://doi.org/10.1016/j.jviromet.2006.12.009
  33. Logan C, O'Leary JJ, O'Sullivan N. Real-time reverse transcription PCR detection of norovirus, sapovirus, and astrovirus as causative agents of acute viral gastroenteritis. J. Virol. Methods 146: 36-44 (2007) https://doi.org/10.1016/j.jviromet.2007.05.031
  34. Rolfe KJ, Parmar S, Mururi D, Wreghitt TG, Jalal H, Zhang H, Curran MD. An internally controlled, one-step, real-time RT-PCR assay for norovirus detection and genogrouping. J. Clin. Virol. 39: 318-321 (2007) https://doi.org/10.1016/j.jcv.2007.05.005
  35. Wolf S, Williamson WM, Hewitt J, Rivera-Aban M, Lin S, Ball A, Scholes P, Greening GE. Sensitive mutiplex real-time RT-PCR assay for the detection of human and animal noroviruses in clinical and environmental samples. Appl. Environ. Microb. 73: 5464-5470 (2007) https://doi.org/10.1128/AEM.00572-07