Implementation of 6LoWPAN Testbed: Location Tracking Service Based on Google Map

구글맵을 이용한 위치 추적 서비스를 제공하는 6LoWPAN 테스트베드 구현

  • 김계원 (삼성테크윈 SIS사업부) ;
  • 서재완 (성균관대학교 일반대학원 휴대폰학과) ;
  • 황대준 (성균관대학교 정보통신공학부) ;
  • 추현승 (성균관대학교 정보통신공학부)
  • Published : 2009.10.30

Abstract

Wireless Sensor Networks (WSNs) is one of the key technologies that make it possible to provide u-service in a ubiquitous society, however, it has disadvantages such as difficulty of managing sensor nodes and weaknesses of stability or mobility in large-scale WSNs. In order to solve these problems, 6LoWPAN that integrates with WSNs and IP networks has been studied widely. In this paper, we propose a Location Tracking Service Based on Google Map (LTSGM) system using 6LoWPAN. Since LTSGM system provides visual location information of sensor nodes through Google Map, it is possible to makes it easier than ever to manage sensor nodes in large-scale WSNs. Moreover, LTSGM can be used for various services such as applications for disaster or crime because it can trace the location of mobile nodes. Implementation of LTSGM system will be a test platform for 6LoWPAN.

유비쿼터스 사회에서 u-서비스를 구현하기 위한 핵심기술 중의 하나인 무선센서네트워크는 대규모망에서 관리가 어렵고 안정성 및 이동성이 취약하다는 단점을 가진다. 이러한 문제점을 해결하기 위하여 최근 센서네트워크와 IP망과의 연동을 위한 6LoWPAN에 대한 연구가 활발히 진행 중에 있다. 본 논문에서는 6LoWPAN을 이용한 위치 추적 시스템 LTSGM(Location Tracking Service Based on Google Map)을 제안한다. LTSGM 시스템은 IP 인프라 서비스인 구글맵과 연동하여 센서노드의 위치를 시각적으로 제공함으로써 대규모 센서네트워크에서의 유지, 보수, 관리를 보다 용이하게 한다. 또한 모바일노드의 위치를 추적할 수 있으므로 향후 각종 재난, 범죄 등의 응용서비스에 활용될 수 있을 것으로 기대한다. 본 논문에서 구현한 LTSGM 시스템은 향후 6LoWPAN연구를 위한 시험적인 플랫폼이 될 수 있을 것이다.

Keywords

References

  1. I. F. Akyilidiz, S. Weilian, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on sensor networks,” IEEE Communications Magazine, vol.40, Issue 8, pp. 102-114, August 2002. https://doi.org/10.1109/MCOM.2002.1024422
  2. J. Qiangfeng and D. Manivannan, “Routing protocols for sensor networks,” IEEE CCNC, pp. 93-98, January 2004.
  3. IPv6 over Low Power WPAN Working Group, http://www.ietf.org/html.charters/6lowpan-charter. html
  4. K. Kim, G. Montenegro, S. Park, I. Chakeres, and S. Yoo, “Dynamic MANET On demand for 6LoWPAN(DYMO-low) Routing,” draft-montenegro-6lowpan-dymo-lowrouting-00.txt, June 2007.
  5. A. Cunha, A. Koubaa, R. Severino, and M. Alves, “Open-ZB: an open-source implementation of the IEEE 802.15.4/ZigBee protocol stack on TinyOS,” IEEE MOBHOC, pp. 1-12, October 2007.
  6. ZigBee Alliance, http://www.zigbee.org
  7. N. Kushalnagar, G. Montenegro, and C. Schumacher, “6LowPAN Overview, Assumptions, Problem Statement and Goals,’’ RFC 4919, August 2007.
  8. N. Kushalnagar, G. Montenegro, J. Hui, and D. Culler, “6LoWPAN Transmission of IPv6 Packets over IEEE 802.15.4 Networks,” RFC4944, September 2007.
  9. G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: a wireless sensor network testbed,” The 4th International Symposium on IPSN, pp.483-488, April 2005.
  10. H. Huo, H. Zhang, Y. Niu, S. Gao, Z. Li, and S. Zhang, “MSRLab6: An IPv6 Wireless Sensor Networks Testbed,” Singnal Processing,” ICSP, vol. 4, pp. 16-20, November 2006.
  11. S. Furrer, W. Schott, H. L. Truong, and B. Weiss, “The IBM wireless sensor networking testbed,” TRIDENTCOM, March 2006.
  12. IEEE Std 802.15.4 Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), 2003
  13. ZigbeX Hardware Reference, http://www.hanback.com
  14. Atmega128(L) data sheet, revision R, updated 6/08.
  15. CC2420 2.4 GHz IEEE 802.15.4/ZigBee RF Transceiver data sheet, TI (Chipcon), 2005.
  16. SHT1x/SHT7x Humidity & Temperature Sensor data sheet, Sensirion, March 2007.
  17. M. Sichitiu and V. Ramaduari, “Localization of wireless sensor networks with a mobile beacon,” IEEE MASS, pp. 174-183, October 2004.
  18. JpGraph, A object-oriented graph creating library for PHP, http://www.aditus.nu/jpgraph/index.php
  19. Google-Map API, Developer documentation for the Google Maps API, http://code.google.com/apis/maps/documentation, 2008.