Induction and in vitro Proliferation of Adventitious Roots in Phyllanthus urinaria

여우구슬(Phyllanthus urinaria)의 부정근 유도 및 기내증식조건

  • Bae, Kee-Hwa (Jeju Biodiversity Research Institute Jeju Hi-Tech Industry Development Institute) ;
  • Yun, Pil-Yong (Jeju Biodiversity Research Institute Jeju Hi-Tech Industry Development Institute) ;
  • Choi, Yong-Eui (Division of forest resources, college of forest and environmental sciences, Kangwon National University)
  • 배기화 (제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 윤필용 (제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 최용의 (강원대학교 산림자원학부)
  • Published : 2009.10.31

Abstract

Phyllanthus urinaria was an important species in Korea and distributed in all around of Korea. The roots and stems of this plant have been used for natural medicine for the treatment of diabetes, the hepatitis B virus and disturbances of the kidney and urinary bladder. Production of adventitious roots in P. urinaria by in vitro cultures could be used as alternatives materials. Shoot and root segments from P. urinaria seedling were cultured on Murashige and Skoog (MS) medium supplemented with 3.0 mg/L IBA and 30 g/L sucrose. After 4 weeks of culture, the highest induction of adventitious roots was obtained from the shoot part. Frequency of adventitious root formation on medium with various kinds of auxins (IAA, NAA, 2,4-D, and IBA) and various concentrations of IBA (0, 0.1, 0.5, 1.0, 3.0, and 5.0 mg/L) was tested. The maximun induction of adventitious root was obtained on medium with 0.5 mg/L IBA. In liquid culture, growth of root was best on medium supplemented with 30 g/L sucrose. Adventitious roots were cultured in 5 L bioreactor containing 1/2 MS medium supplemented with 0.5 mg/L IBA and 30 g/L sucrose and mass-production of adventitious roots was successfully achieved. These results revealed the first attempt for the production of adventitious roots in P. urinaria.

본 실험은 여우구슬의 기내 부정근 유도 및 증식조건의 확립을 목적으로 수행되었다. 우선 여우구슬의 기내 발아체로부터 부위를 달리하여 부정근을 유도한 결과 줄기부위는 뿌리보다 양호한 부정근의 유도를 보였다. 또한 유도된 부정근을 이용하여 옥신의 종류(IAA, IBA, NAA와 2.4-D)에 따른 부정근 유도율을 조사한 결과 IBA와 NAA는 IAA와 2.4-D보다 높은 유도율을 보였다. IBA의 농도에 따른 유도율과 증식효율은 IBA가 0.5 mg/L첨가되었을 때 가장 높은 유도 및 증식효율을 보였다. 최적의 액체배지조건을 확인하고자 IBA의 농도는 0.5 mg/L로 첨가하고 sucrose의 농도를 달리하여 실험한 결과 sucrose는 30 g/L 첨가 되었을 때 가장 높은 생중량과 건중량을 나타냈다. 액체배양된 여우구슬의 부정근을 각각 MS, 1/2MS, 1/3MS배지에 30 g/L sucrose, 0.5 mg/L IBA가 첨가된 5 L 용량의 생물반응기에 4주간 배양한 결과 1/2MS 배지에서 양호한 생장을 보였다. 본 실험에서는 여우구슬의 종자발아체를 이용하여 부정근의 유도 및 증식조건에 필요한 기내배양조건과 2차적으로 유도된 부정근을 이용하여 플라스크와 생물반응기 배양을 통한 효율적인 증식조건을 확립하였다.

Keywords

References

  1. Ahn, C.H., K.H. Bae, J.S. Yi, and Y.E. Choi. 2008. Induction and growth of adventitious roots and bioreactor culture in Codonopsis lanceolata. Kor. J. Plant. Tiss. Cult. 35:155-161. (In Korean) https://doi.org/10.5010/JPB.2008.35.2.155
  2. Bae, K.H. 2000. The Medicinal Plants of Korea. Kyo-Hak Pubilishing Co., Ltd., Seoul, Korea pp. 364. (In Korean)
  3. Blumberg, B.S., I. Millman, P.S. Venkateswaran, and S.P. Thyagarajan. 1989. Hepatitis B virus and hepatocellular carcinoma-treatment of HBV carriers with Phyllanthus amarus. Cancer Detect. Prevent. 1:195-201
  4. Bourgaud, F., A. Gravot, S. Milesi, and E. Gontier. 2001. Production of plant secondary metabolites: a historical perspective. Plant Sci. 161:839-851 https://doi.org/10.1016/S0168-9452(01)00490-3
  5. Catapan, E., M.F. Otuki, and A.M. Viana 2000. In vitro culture of Phyllanthus caroliniensis (Euphorbiaceae). Plant Cell Tiss. Org. Cult. 62:195-202 https://doi.org/10.1023/A:1006406806839
  6. Catapan, E., M. Luis, B. Silva, F.N. Moreno, and A.M. Viana 2002. Micropropagation, callus and root culture of Phyllanthus urinaria (Euphorbiaceae). Plant Cell Tiss. Org. Cult. 70:301-309 https://doi.org/10.1023/A:1016529110605
  7. Chang, S.W., I.H. Kim, and T.J. Han. 1999. Anthraquinone productivity by the cultures of adventitious roots and hairy roots from Cureled dock (Rumex crispus). Kor. J. Plant. Tiss. Cult. 26:7-14. (In Korean)
  8. Kim, C.Y., J.M. Kim, T.G. Kim, S.H. Kim, and H. Huh. 1998. Inhibition of HBV replication by the extract of Phyllanthus ussuriensis. J. Appl. Pharm. 6:139-144. (In Korean)
  9. Kim, S.G., D.Y. Cho, and W.Y. Soh. 1995. Saikosaponin content in adventitious root formed from callus of Bupleurum falcatum L. Kor. J. Plant Tiss. Cult. 22:29-33. (In Korean)
  10. Lazaridou, A., T. Roukas, C.G. Biliaderis and H. Vaikousi. 2002. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enz. Microbial. Tech. 31:122-132 https://doi.org/10.1016/S0141-0229(02)00082-0
  11. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15:473-479 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  12. Paek, K.Y. and D. Chakravarthy. 2003. Micropropagation of woody plants using bioreactor. In: Jain, S.M., and Ishii. K. (eds), Micropropagation of Woody Trees and Fruits. Kluwer Academic Publisher, Dordresht, pp. 735-755
  13. Seo, J.W., C.K. Shin, and Y.E. Choi. 2003. Mass production of adventitious roots of Eleutherococcus sessiliflorus through the bioreactor culture. J. Plant Biotech. 5:187-191. (In Korean)
  14. Shead, A., K. Vickery, R. Medhurst, J. Freiman, and Y. Cossart. 1990. Neutralisation but not care of duck hepatitis B by Australian Phyllanthus extract. Abstract 602 In: Scientific program and abstract volume, the 1990 International Symposium on viral hepatitis and liver diseases, April 4-8, 1990, Houston, Texas
  15. Singh, B., P.K. Agrawal, and R.S. Thakur. 1989. A new lignan and a new neolignan from Phyllanthus niruri. J. Natl. Prod. 52:48-51 https://doi.org/10.1021/np50061a004
  16. Tanaka, R., K. Masuda, and S. Matsuaga. 1993. Lup-20(29)-en-3b, 15a-diol and ocotillol from the stem bark of Phyllanthus flexuosus. Phytochemistry 32:472-474 https://doi.org/10.1016/S0031-9422(00)95021-0
  17. Toivonen, L. and H. Rosenqvist. 1995. Establishment and growth characteristics of Glycyrrhiza glabra hairy root culture. Plant Cell Tiss. Org. Cult. 41:249-258 https://doi.org/10.1007/BF00045089
  18. Unander, D.W. 1991. Callus induction in Phyllanthus species and inhibition of viral DNA polymerase and reverse transcriptase by callus extract. Plant Cell Rep. 10:461-466 https://doi.org/10.1007/BF00233815
  19. Vengaterwaran, P.S. and B.S. Blumberg. 1987. Effect of an extract from Phyllanthus nuruni on hepatitis B and woodchuk hepatitis viruses: In vitro and in vivo studies. Proc. Natl. Acad. Sci. 84:274-278 https://doi.org/10.1073/pnas.84.1.274
  20. Yanagi, M., M. Unoura, K. Kobayashi, N. Hattori, and S. Murakami. 1989. Inhibitory effect of an extract from Phyllanthus niruri on reaction of endogenous HBV-DNA polymerase and other DNA synthetase. Cold Sp. p.77
  21. Yu, K.W., W. Gao, E.J. Hahn, and K.Y. Paek. 2002. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem. Eng. J. 11:211-215 https://doi.org/10.1016/S1369-703X(02)00029-3
  22. Yu, K.W., E.J. Hahn, and K.Y. Paek. 2000. Production of adventitious ginseng roots using bioreactor. Kor. J. Plant Tiss. Cult. 27:309-315. (In Korean)