References
- Y.J. Ahn. Conic approximation of planar curves. Comp. Aided Desi. 33 (2001) 867-872. https://doi.org/10.1016/S0010-4485(00)00110-X
- Y.J. Ahn. Helix approximations with conic and quadratic Bezier curves. Comp. Aided Geom. Desi. 22 (2005) 551-565. https://doi.org/10.1016/j.cagd.2005.02.003
- Y.J. Ahn. Approximation of conic sections by curvature continuous quartic splines. submitted.
- Y.J. Ahn, H.O. Kim. Approximation of circular arcs by Bezier curves. J. Comp. Appl. Math. 81 (1997) 145-163. https://doi.org/10.1016/S0377-0427(97)00037-X
- Y.J. Ahn, H.O. Kim. Curvatures of the quadratic rational Bezier curves. Comp. Math. Appl. 36 (1998) 71–83.
- Y.J. Ahn, Y. S. Kim, Y. S. Shin. Approximation of circular arcs and offset curves by Bezier curves of high degree. J. Comp. Appl. Math. 167 (2004) 181–191.
- C. de Boor, K. Hollig, M. Sabin. High accuracy geometric Hermite interpolation. Comp. Aided Geom. Desi. 4 (1987) 169-178.
- T. Dokken, M. Daehlen, T. Lyche, K. Morken. Good approximation of circles by curvature-continuous Bezier curves. Comp. Aided Geom. Desi. 7 (1990) 33–41. https://doi.org/10.1016/0167-8396(90)90019-N
- J. D. Emery. The definition and computation of a metric on plane curves. Comp. Aided Desi. 18 (1986) 25-28. https://doi.org/10.1016/S0010-4485(86)80006-9
- L. Fang. Circular arc approximation by quintic polynomial curves. Comp. Aided Geom. Desi. 15 (1998) 843- 861. https://doi.org/10.1016/S0167-8396(98)00019-3
-
L. Fang.
$G^3$ approximation of conic sections by quintic polynomial curves. Comp. Aided Geom. Desi. 16 (1999) 755-766 https://doi.org/10.1016/S0167-8396(99)00017-5 - L. Fang. A rational quartic Bezier representation for conics. Comp. Aided Geom. Desi. 19 (2002) 297–312. https://doi.org/10.1016/S0167-8396(02)00096-1
- G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Morgan-Kaufmann, San Francisco, 2002.
- M. Floater. High order approximation of conic sectons by quadratic splines. Comp. Aided Geom. Desi. 12 (1995) 617–637. https://doi.org/10.1016/0167-8396(94)00037-S
-
M. Floater. An
$O(h^{2n})$ Hermite approximation for conic sectons. Comp. Aided Geom. Desi. 14 (1997) 135– 151. https://doi.org/10.1016/S0167-8396(96)00025-8 - M. Floater. High order approximation of rational curves by polynomial curves. Comp. Aided Geom. Desi. 23 (2006) 621-628. https://doi.org/10.1016/j.cagd.2006.06.003
- M. Goldapp. Approximation of circular arcs by cubic polynomials. Comp. Aided Geom. Desi. 8 (1991) 227–238. https://doi.org/10.1016/0167-8396(91)90007-X
- J. A. Gregory. 1989. Geometric continuity. In T. Lyche and L.L. Schumaker, editors, Mathematical Methods in CAGD, pages 353–371, Nashville, Academic Press.
- Q. Q. Hu, G. J.Wang. Necessary and sufficient conditions for rational quartic representation of conic sections. J. Comput. Appl. Math. 203 (2007) 190-208. https://doi.org/10.1016/j.cam.2006.03.024
- S. H. Kim, Y. J. Ahn. Approximation of circular arcs by quartic Bezier curves. Comp. Aided Desi. 39 (2007) 490–493. https://doi.org/10.1016/j.cad.2007.01.004
- L. Lu. Approximating tensor product Bezier surfaces with tangent plane continuity. J. Comp. Appl. Math. 231 (2009) 412–422.
- K. Morken. 1990. Best approximation of circle segments by quadratic Bezier curves. In P.J. Laurent, A. Le Mehaute, and L.L. Schumaker, editors, Curves and Surfaces, New York, Academic Press.