Abstract
Formally p$\rightarrow$q means that affirming p one implicitly affirms q and that denying q one implicitly denies p. Denying p or affirming q do not lead to certain conclusions. Middle school students can recognize practical implication p$\rightarrow$q is true whenever p is false, but they don't recognize theoretical implication p$\rightarrow$q is true whenever p is false. They have not assimilated intuitively the complete structure of implication. Thus they do not distinguish naturally between the uncertain conclusion which can be drawn by affirming p and the certain rejection of p which follows from the negation of q. Also they can not recognize the uncertain conclusion which can be drawn by negation of p. There is no significant difference between practical conditional statements, formal conditional statements and conditional Inferences in advanced mathematics students. But there is a significant difference between formal conditional inferences and specific conditional inferences with statement p$\rightarrow$q is true when p is false.
가정이 거짓인 조건명제가 참임을 설명하는 단서조항의 유무에 따라 조건명제와 조건추론에 대한 학생들의 바른 판정에는 유의미한 차이가 있고 실생활과 관련된 조건 명제와 형식적인 조건명제에 대한 중학생들의 진위판정에도 유의미한 차이가 있었지만 대학생들의 경우에는 유의미한 차이가 없는 것으로 조사되었다. 또한 형식적인 조건명제와 조건추론에 대한 학생들의 바른 판정 간에는 비교적 높은 상관관계가 있는 것으로 분석 되었다.