Compressed Sensing 기법을 이용한 Dynamic MR Imaging

Compressed Sensing Based Dynamic MR Imaging: A Short Survey

  • 정홍 (한국과학기술원 바이오및뇌공학과) ;
  • 예종철 (한국과학기술원 바이오및뇌공학과)
  • 발행 : 2009.09.25

초록

Compressed sensing은 기존의 Nyquist sampling 이론에 기반을 두었던 dynamic MRI에서의 시 공간 해상도의 제한을 획기적으로 향상시킴으로써, 최근 몇 년 사이, MR reconstruction 분야에서 가장 큰 이슈가 되고 있는 연구주제이다. Dynamic MRI 는 대부분 시간방향의 redundancy 가 매우 크므로, 쉽게 sparse 변환이 가능하다. 따라서 sparsity를 기본 조건으로 하는 compressed sensing은 거의 모든 dynamic MRI 에 대해 효과적으로 적용될 수 있다. 본 review 페이퍼에서는 최근 compressed sensing 에 기반을 두거나 영상의 sparsity를 이용하여 개발된 dynamic MR imaging algorithm 들을 간략히 소개하고, 비교 분석함으로써, compressed sensing과 같은 새로운 접근 방식의 dynamic MRI가 실제 임상에서 가져다 줄 발전 가능성을 제시한다.

The recently developed sampling theory, "compressed sensing" is gathering huge interest in MR reconstruction area because of its feasibility of high spatio-temporal resolution of dynamic MRI which has been limited in conventional methods based on Nyquist sampling theory. Since dynamic MRI usually has high redundant information along temporal direction, this can be very sparsely represented in most of cases. Therefore, compressed sensing that exploits the sparsity of unknown images can be effectively applied in most of dynamic MRI. This review article briefly introduces currently proposed compressed sensing based dynamic MR imaging algorithms and other methods exploiting sparsity. By comparing them with conventional methods, you may have insight how the compressed sensing based methods can impact nearly every area of clinical dynamic MRI.

키워드

참고문헌

  1. Jeffrey Tsao, Boesiger P, Pruessmann KP. "k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations," Magn Reson Med, vol. 50, pp. 1031–.1042, 2003 https://doi.org/10.1002/mrm.10611
  2. Donoho DL. "Compressed sensing," IEEE Trans on Inform Theory, vol. 52, pp. 1289–.1306, 2006 https://doi.org/10.1109/TIT.2006.871582
  3. Candes E, Romberg J, Tao T. "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans Info Theory, vol. 52, pp. 489–.509, 2006 https://doi.org/10.1109/TIT.2005.862083
  4. H. Jung, J. C. Ye, and E. Y. Kim, "Improved k-t BLAST and k-t SENSE using FOCUSS," Physics in Medicine and Biology, vol. 52, pp. 3201-3226, June 2007 https://doi.org/10.1088/0031-9155/52/11/018
  5. H. Jung, K. H. Sung, K. S. Nayak, E. Y. Kim, and J. C. Ye, "k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI," Magn Reson Med, vol. 61, pp. 103-116, January 2009 https://doi.org/10.1002/mrm.21757
  6. Lustig M, Donoho DL, Pauly JM. "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magn Reson Med, vol. 58, pp. 1182–1195, 2007 https://doi.org/10.1002/mrm.21391
  7. Lustig M, Santos JM, Donoho DL, Pauly JM. "k-t SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity," In Proceedings of ISMRM, Seattle, WA, April 2006
  8. Xu D, King KF, Liang Z-P. "Improving k-t SENSE by Adaptive Regularization," Magn Reson Med, vol. 57, pp. 918–930, 2007 https://doi.org/10.1002/mrm.21203
  9. Mistretta CA, Wieben O, Velikina J, Block WF, Perry J, Wu Y, Johnson K, Wu Y. "Highly constrained backprojection for time-resolved MRI," Magn Reson Med, vol. 55, pp. 30–40, 2006 https://doi.org/10.1002/mrm.20772
  10. O'Halloran R, Wen Z, Holmes JH, Fain SB, "Iterative projection reconstruction of time- resolved images using highly-constrained back- projection (HYPR)," Magn. Reson. Med. vol. 59, pp. 132-139, 2008 https://doi.org/10.1002/mrm.21439
  11. Z. Liang, "Spatiotemporal Imaing with Partially Separable Functions," in 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007, pp. 988-991, 2007
  12. Qiu C, Lu W, Vaswani N, "Real-time dynamic MR image reconstruction using Kalman filtered compressed sensing," IEEE Intl. Conf. Acoustics, Speech, Sig. Proc.(ICASSP), 2009