낮은 계수 행렬의 Compressed Sensing 복원 기법

Compressed Sensing of Low-Rank Matrices: A Brief Survey on Efficient Algorithms

  • 이기륭 (일리노이 주립대학교) ;
  • 예종철 (한국과학기술원 바이오및뇌공학과)
  • 발행 : 2009.09.25

초록

Compressed sensing은 소수의 선형 관측으로부터 sparse 신호를 복원하는 문제를 언급하고 있다. 최근 벡터 경우에서의 성공적인 연구 결과가 행렬의 경우로 확장되었다. Low-rank 행렬의 compressed sensing은 ill-posed inverse problem을 low-rank 정보를 이용하여 해결한다. 본 문제는 rank 최소화 혹은 low-rank 근사의 형태로 나타내질 수 있다. 본 논문에서는 최근 제안된 여러 가지 효율적인 알고리즘에 대한 survey를 제공한다.

Compressed sensing addresses the recovery of a sparse vector from its few linear measurements. Recently, the success for the vector case has been extended to the matrix case. Compressed sensing of low-rank matrices solves the ill-posed inverse problem with fie low-rank prior. The problem can be formulated as either the rank minimization or the low-rank approximation. In this paper, we survey recently proposed efficient algorithms to solve these two formulations.

키워드

참고문헌

  1. M. Fazel, 'Matrix rank minimization with applications,' Ph.D. dissertation, Stanford University, 2002
  2. B. Recht, M. Fazel, and P. Parrilo, 'Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization,' Arxiv preprint arXiv:0706.4138, 2007
  3. E. Candes and B. Recht, 'Exact Matrix Completion via Convex Optimization,' Arxiv preprint arXiv:0805.4471, 2008
  4. M. Fazel, H. Hindi, and S. Boyd, 'A rank minimization heuristic with application to minimum order system approximation,' in Proceedings American Control Conference, vol. 6, 2001, pp. 4734–4739
  5. G. Watson, 'On matrix approximation problems with Ky Fank norms,' Numerical Algorithms, vol. 5, no. 5, pp. 263–272, 1993 https://doi.org/10.1007/BF02210386
  6. J. Cai, E. Candes, and Z. Shen, "A singular value thresholding algorithm for matrix completion," Arxiv preprint arXiv:0810.3286, 2008
  7. K. Lee and Y. Bresler, 'Efficient and guaranteed rank minimization by atomic decomposition,' Arxiv preprint arXiv:0901.1898, 2009
  8. S. Mallat and Z. Zhang, 'Matching pursuits with time-frequency dictionaries,' IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993 https://doi.org/10.1109/78.258082
  9. Y. Pati, R. Rezaiifar, and P. Krishnaprasad, 'Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition,' in Proc. Asilomar Conf. on Signals, Systems, and Computers, vol. 1, Pacific Grove, CA, Nov. 1993, pp. 40–44
  10. D. Needell and J. Tropp, 'CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,' Arxiv preprint arXiv:0803.2392, 2008
  11. W. Dai and O. Milenkovic, 'Subspace pursuit for compressive sensing: closing the gap between performance and complexity,' Arxiv preprint arXiv:0803.0811, 2008
  12. K. Lee and Y. Bresler, 'ADMiRA: Atomic Decomposition for Minimum Rank Approximation,' Arxiv preprint arXiv:0905.0044, 2009
  13. J. Haldar and D. Hernando, 'Rank-Constrained Solutions to Linear Matrix Equations using PowerFactorization,' will appear in IEEE Signal Processing Letters
  14. R. Keshavan, S. Oh, and A. Montanari, 'Matrix Completion from a Few Entries,' Arxiv preprint arXiv:0901.3150, 2009
  15. A. Edelman, T. Arias, and S. Smith, 'The Geometry of Algorithms with Orthogonality Constraints,' SIAM journal on matrix analysis and applications, vol. 20, no. 2, pp. 303–353, 1999 https://doi.org/10.1137/S0895479895290954
  16. M. Fazel, E. Candes, B. Recht, and P. Parrilo, 'Compressed sensing and robust recovery of low rank matrices,' in Proc. Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Oct. 2008
  17. R. Larsen, 'PROPACK–Software for large and sparse SVD calculations,' Available from http://soi.stanford.edu/ rmunk/PROPACK/
  18. S. Har-Peled, 'Low rank matrix approximation in linear time,' note, 2006
  19. L. Mirsky, 'Symmetric gauge functions and unitarily invariant norms,' The Quarterly Journal of Mathematics, vol. 11, no. 1, pp. 50-59, 1960 https://doi.org/10.1093/qmath/11.1.50