참고문헌
- R. J. Bagby, Calculating normal probabilities, Amer. Math. Monthly 102 (1995), no. 1, 46-48. https://doi.org/10.2307/2974857
- W. Bryc, A uniform approximation to the right normal tail integral, Appl. Math. Comput. 127 (2002), no. 2-3, 365-374. https://doi.org/10.1016/S0096-3003(01)00015-7
- D. Elliott, Sigmoidal transformations and the trapezoidal rule, J. Aust. Math. Soc. Ser. B 40 (1998/99), (E), E77-E137.
- H. Hamaker, Approximating the cumulative normal distribution and its inverse, Appl. Statist. 27 (1978), 76-77. https://doi.org/10.2307/2346231
- R. G. Hart, A closed approximation related to the error function, Math. Comp. 20 (1966), 600-602. https://doi.org/10.2307/2003549
- R. G. Kerridge and G. W. Cook, Yet another series for the normal integral, Biometrika 63 (1976), 401-407. https://doi.org/10.1093/biomet/63.2.401
- J. T. Lin, A simpler logistic approximation to the normal tail probability and its inverse, J. Roy. Statist. Soc. Ser. C 39 (1990), no. 2, 255-257. https://doi.org/10.2307/2347764
- P. A. P. Moran, Caculation of the normal distribution function, Biometrika 67 (1980), 675-676. https://doi.org/10.1093/biomet/67.3.675
- R. M. Norton, Pocket-calculator approximation for areas under the standard normal curve, Amer. Statist. 43 (1989), 24-26. https://doi.org/10.2307/2685163
- E. Page, Approximation to the cumulative normal function and its inverse for use on a pocket calculator, Appl. Statist. 26 (1977), 75-76. https://doi.org/10.2307/2346872
- S. Prossdorf and A. Rathsfeld, On an integral equation of the first kind arising from a cruciform crack problem, Integral equations and inverse problems (Varna, 1989), 210-219, Pitman Res. Notes Math. Ser., 235, Longman Sci. Tech., Harlow, 1991.
- T. W. Sag and G. Szekeres, Numerical evaluation of high-dimensional integrals, Math. Comp. 18 (1964), 245-253. https://doi.org/10.2307/2003298
- J. D. Vedder, An invertible approximation to the normal-distribution function, Comput. Statist. Data Anal. 16 (1993), 119-123. https://doi.org/10.1016/0167-9473(93)90248-R
- G. R.Waissi and D. F. Rossin, A sigmoid approximation to the standard normal integral, Appl. Math. Comput. 77 (1996), 91-95. https://doi.org/10.1016/0096-3003(95)00190-5
피인용 문헌
- New Sigmoid-like function better than Fisher z transformation vol.45, pp.8, 2016, https://doi.org/10.1080/03610926.2013.771750
- On the approximation of the step function by some sigmoid functions vol.133, 2017, https://doi.org/10.1016/j.matcom.2015.11.005
- Tail Probability Ratios of Normal and Student’stDistributions vol.43, pp.18, 2014, https://doi.org/10.1080/03610926.2012.701700
- The computation of standard normal distribution integral in any required precision based on reliability method pp.1532-415X, 2018, https://doi.org/10.1080/03610926.2018.1433855