DOI QR코드

DOI QR Code

Fabrication of Nanoporous Carbon Fibers by Electrospinning

상 분리 폴리머 혼합액의 전기 방사에 의한 나노 포러스 탄소 파이버 제작

  • Kim, Hong-Yeun (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Dae-Hee (Department of Materials Science and Engineering, Yonsei University) ;
  • Moon, Joo-Ho (Department of Materials Science and Engineering, Yonsei University)
  • 김홍연 (연세대학교 신소재공학과) ;
  • 이대희 (연세대학교 신소재공학과) ;
  • 문주호 (연세대학교 신소재공학과)
  • Published : 2009.10.27

Abstract

Electrospinning is a technique that produces sub-micron sized continuous fibers by electric force from polymer solutions or melts. Due to its versatile manufacturability and the cost effectiveness, this method has been recently adopted for the fabrication of one-dimensional materials. Here, we fabricated polyacrylonitrile (PAN) polymer fibers, from which uniform carbon fibers with diameters of 100-200 nm were obtained after carbonization at 800 $^{\circ}C$ in N$_2$. Special emphasis was directed to the influence of the phase separated polymer solution on the morphology and the microstructure of the resulting carbon fiber. The addition of poly(stylene-co-acrylonitile) (SAN) makes the polymer solution phase separated, which allows for the formation of internal pores by its selective elimination after electrospinning. XPS and Raman Spectroscopy were used to confirm the surface composition and the degree of carbonization. At the PAN:SAN = 50:50 in vol%, the uniform carbon fibers with diameters of 300$\sim$500 nm and surface area of 131.6 m$^2$g$^{-1}$ were obtained.

Keywords

References

  1. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Dresselhaus, Science, 286(5442), 1127 (1999). https://doi.org/10.1126/science.286.5442.1127
  2. S. M. Lee and Y. H. Lee, Appl. Phys. Lett., 76(20), 2877 (2000). https://doi.org/10.1063/1.126503
  3. Y. Chen, D. T. Shaw, X. D. Bai, E. G. Wang and C. Lund, Appl. Phys. Lett., 78(15), 2128 (2001). https://doi.org/10.1063/1.1341224
  4. T. Heine, L. Zhechkov and G. Seifert, Phys. Chem. Chem. Phys., 6(5), 980 (2004). https://doi.org/10.1039/b316209e
  5. Y. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 94(15), 155504 (2005). https://doi.org/10.1103/PhysRevLett.94.155504
  6. A. Zuttel, P. Sudan, Ph. Mauron, T. Kiyobayashi, Ch. Emmenegger and L. Schlapbach, Int. J. Hydrogen Energy, 27(2), 203 (2002). https://doi.org/10.1016/S0360-3199(01)00108-2
  7. M. A. de la Casa-Lillo, F. Lamari-Darkrim, D. Cazorla-Amoros, and A. Linares-Solano, J. Phys. Chem. B, 106(42), 10930 (2002). https://doi.org/10.1021/jp014543m
  8. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40(16), 4585 (1999). https://doi.org/10.1016/S0032-3861(99)00068-3
  9. A. V. Bazilevsky, A. L. Yarin, and C. M. Megaridis, Langmuir, 23(5), 2311 (2007). https://doi.org/10.1021/la063194q
  10. S. Moon, J. Choi and R. J. Farris, Fiber Polym., 9(3), 276 (2008). https://doi.org/10.1007/s12221-008-0044-y
  11. C. Zhou, T. Liu, T. Wang and S. Kumar, Polymer, 47(16), 5831 (2006). https://doi.org/10.1016/j.polymer.2006.06.003
  12. H. S. Kim, J. Polym. Sci. Part B: Polym. Phys., 34(7), 1181 (1996). https://doi.org/10.1002/(SICI)1099-0488(199605)34:7<1181::AID-POLB1>3.0.CO;2-Z
  13. S. Y. Gu, J. Ren and Q. L. Wu, Synth. Met., 155(1), 157 (2005). https://doi.org/10.1016/j.synthmet.2005.07.340
  14. W. Zhang, Y. Wang and C. Sun, J. Polym. Res., 14(6), 467 (2007). https://doi.org/10.1007/s10965-007-9130-x
  15. J. C. Lee, B. H. Lee, B. G. Kim, M. J. Park, D. Y. Lee, I. H. Kuk, H. Chung, H. S. Kang, H. S. Lee and D. H. Ahn, Carbon, 35(10-11), 1479 (1997). https://doi.org/10.1016/S0008-6223(97)00098-5
  16. C. Kim, J. Power Sources, 142(1-2), 382 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.013
  17. D. Li and Y. Xia, Nano Lett., 3(2), 143 (2003). https://doi.org/10.1021/nl0259030
  18. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids, 13(8), 2221 (2001). https://doi.org/10.1063/1.1384013
  19. S. Park, D. Y. Lee, M. H. Lee, S. J. Lee, and B. Y. Kim, J. Kor. Ceram. Soc. (in Korean), 42(8), 548 (2005). https://doi.org/10.4191/KCERS.2005.42.8.548
  20. J. M. Deitzel, W. Kosik, S. H. McKnight, N. C. Beck Tan, J. M. DeSimone and S. Crette, Polymer, 43(3), 1025 (2002). https://doi.org/10.1016/S0032-3861(01)00594-8
  21. Y. Zhu, J. C. Zhang, J. Zhai, Y. M. Zheng, L. Feng and L. Jiang, ChemPhysChem, 7(2), 336 (2006). https://doi.org/10.1002/cphc.200500407
  22. W. H. Lee, J. G. Lee and P. J. Reucroft, Appl. Surf. Sci., 171(1), 136 (2001). https://doi.org/10.1016/S0169-4332(00)00558-4
  23. F. Lamari Darkrim, P. Malbrunot and G. P. Tartaglia, Int. J. Hydrogen Energy, 27(2), 193 (2002). https://doi.org/10.1016/S0360-3199(01)00103-3
  24. Y. Wang, S. Serrano and J. J. Santiago-Aviles, Synth. Met., 138(3), 423 (2003). https://doi.org/10.1016/S0379-6779(02)00472-1
  25. C. Kim, S. H. Park, J. I. Cho, D.Y. Lee, T. J. Park, W. J. Lee and K. S. Yang, J. Raman Spectrosc., 35(11), 928 (2004). https://doi.org/10.1002/jrs.1233
  26. Y. Raitses, C.H. Skinner, F. Jiang and T.S. Duffy, J. Nucl. Mater., 375(3), 365 (2008). https://doi.org/10.1016/j.jnucmat.2008.01.012
  27. A. C. Ferrari and J. Robertson, Phys. Rev. B, 64(7), 075414 (2001). https://doi.org/10.1103/PhysRevB.64.075414