• Title/Summary/Keyword: poly (styrene-co-acrylonitrile)

Search Result 19, Processing Time 0.039 seconds

Characteristics of Nylon 6/Poly(acrylonitrile-co-styrene-co-acrylic rubber) Blends Containing Compatibilizer (상용화제가 포함된 나일론 6/Poly(acrylonitrile-co-styrene-co-acrylic rubber) 블렌드의 특성)

  • Kim, Lang-Wook;Yoo, Sun-Hwa;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2007
  • To overcome drawbacks of the nylon 6/poly (acrylonitrile-co-butadiene-co-styrene) (ABS) blend, nylon 6 blend with poly (acrylonitrile - co-styrene - co-acrylic rubber) (ASA) which containing poly (butyl acrylate) as a rubber phase in substitute of poly (butadiene) in ABS, was examined. Poly (styrene-co-maleic anhydride) (SMA) containing 25 wt% of maleic anhydride (MA) or poly (styrene- co-acrylo-nitrile-co-maleic anhydride) (SANMA) containing less than 3 wt% MA was used as a compatibilizer to fabricate blends having high impact strength. Changes in the mechanical properties of nylon 6/ASA blend with compatibilizer content were similar with those of nylon 6/ABS blend. Blends haying high impact strength was produced when blends contained more than about 20 wt% rubber. Blends containing SAM or SANMA as a compatibilizer were stayed in a injection molding machine at the molding temperature and afterwards specimens for the examination of the impact strength was prepared. Impact strength of blends containing SMA was decreased with retention time, while that of blends containing SANMA was not changed with retention time.

Compatibilizing Effect of Polystyrene-Poly(caprolactone) Block Copolymer Synthesized from Macroinitiator in Poly(2, 6-dimethyl-1, 4-phenylene oxide)/Poly(styrene-co-acrylonitrile) Blend (Poly(2, 6-dimethyl-1, 4-phenylene oxide)/Poly(styrene-co-acrylonitrile)블렌드에서 Macroinitiator로 합성한 Polystyrene-Poly(caprolactone) 블록공중합체의 상용제로서의 역할에 관한 연구)

  • Chung, Oong-Kwon;Jeong, Han-Mo;Yang, Sung-Bong;Yoon, Koo-Sik
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.247-255
    • /
    • 1992
  • Polystyrene-poly(caprolactone) (PS-PCL) block copolymer was synthesized from macroazoinitiator, and its compatibilizing effect in poly(2, 6-dimethyl-1, 4-phenylene oxide) (PPO)/poly(styrene-co-acrylonitrile) (SAN, 25wt% acrylonitrile) blend was studied. PS block and PCL block in the block copolymer had shown miscibility with PPO and SAN respectively. The dissolution of SAN into PPO domain was promoted by the addition of the PS-PCL block copolymer.

  • PDF

Mechanical and Morphological Properties of Poly(acrylonitrile-butadiene-styrene) and Poly(lactic acid) Blends (아크릴로니트릴-부타디엔-스티렌 공중합체와 폴리유산과의 블렌드에 대한 기계적 물성 및 모폴로지)

  • Lee, Yun Kyun;Kim, Ji Mun;Kim, Woo Nyon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.438-442
    • /
    • 2011
  • Mechanical and morphological properties of poly(acrylonitrile-butadiene-styrene) (ABS) and poly(lactic acid) (PLA) blends containing compatibilizers were investigated. Poly(styrene-acrylonitrile)-g-maleic anhydride) (SAN-g-MAH), poly(ethylene-co-octene) rubber-maleic anhydride (EOR-MAH) and poly(ethylene-co-glycidyl methacrylate) (EGMA) were used as compatibilizers. Mechanical properties such as tensile, flexural and impact strengths of ABS/PLA (80/20, wt%) blends were found to be increased when the SAN-g-MAH, EOR-MAH and EGMA were used. The maximum values for mechanical properties of the ABS/PLA (80/20) blend were observed when SAN-g-MAH was used as a compatibilizer at the concentration of 3 phr. From morphological studies of the ABS/PLA (80/20) blends, PLA droplet size was decreased by the addition of the compatibilizers used in this study. From the results of mechanical and morphological properties of the ABS/PLA (80/20) blends, SAN-g-MAH (3 phr) was found to be the most effective compatibilizer among the compatibilizers used in this study.

One-Pot Synthesis of Clay-dispersed Poly(styrene-co-acrylonitrile) Copolymer Nanocomposite using Poly($\varepsilon$-caprolactone) as a Compatibilizer

  • Ko, Moon-Bae
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.186-191
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of three components, i.e. poly (styrene co-acrylonitrile) copolymer (SAN), poly ($\xi$-caprolactone ) (PCL), and an organophilic clay(Cloisite(R) 30A). In the present study, poly($\xi$-caprolactone) was added in the mixtures in order to facilitate the intercalation of SAN into the gallery of silicate layers, and the molecular weight effects of PCL on the dispersion of silicate layers were compared by changing the amount of added PCL. The degree of dispersion of 10-$\AA$-thick silicate layers of clay in the nanocomposites was investigated by using an X-ray diffractometer and a transmission electron microscope. It was found that PCL added in the mixture facilitate the intercalation of SAN copolymers into the galleries of silicate layers modified with an organic intercalant, resulting in the better dispersion of clay. It was, also, observed that the processing temperature influences the degree of clay dispersion.

  • PDF

The Effects of Blend Composition and Compatibilizer on the Mechanical Properties of the PP/SAN and the PP/ABS Blends (블렌드 조성과 상용화제가 PP/SAN과 PP/ABS 블렌드의 기계적 물성에 미치는 영향)

  • 박정훈;성운모;현재천;김우년;홍병권;홍존희;임양수
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.53-60
    • /
    • 2002
  • Polypropylene(PP : continuous phase)/poly (styrene-co-acrylonitrile)(SAN : dispersed phase) blends, and PP/poly(acrylonitrile-butadiene-styrene) (ABS : dispersed phase)blends, containing various amounts of compatibilizer(PP-SAN graft copolymer), were prepared at various shear rates by using twin-screw extruder. In the PP/SAN blend, the average size of the dispersed particles(SAN) was increased with SAN content, while the flexural strength and tensile strength were decreased with SAN content. When the screw rpm was increased from 10 to 60 rpm, the size of the dispersed phase was decreased while the flexural strength and the tensile strength were increased. Maximum mechanical strength and minimum droplet size were observed when the 5 phr compatibilizer was added to the PP/SAN blends. The mechanical strength of PP/ABS blends such as flexural strength and tensile strength increased by adding compatibilizer was reached maximum when blends contained 5 phr compatibilizer.

Surface Structure of Blend Films of Styrene/Acrylonitrile Copolymer and Poly(methyl methacrylate)(PMMA) or Hydrolyzed PMMA

  • 이원기;K. Tanaka;A. Takahara;T. Kajiyama;하창식
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.958-961
    • /
    • 1997
  • The compatibility and the surface structure of blends of poly(styrene-co-acrylonitrile) (SAN) with either poly(methyl methacrylate) (PMMA) or hydrolyzed PMMA (H-PMMA) were studied in terms of film thickness, interaction, and surface free energy difference on the basis of X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform IR spectroscopy and atomic force microscopy. The XPS measurement showed that the surface enrichment of (PMMA/SAN) blends with different AN contents of SAN and with different carboxyl acid contents of PMMA was dependent on the molecular interaction, the surface free energy difference between components and the sample preparation history. It was found that the compatibility of H-PMMA and SAN was reduced with increasing carboxyl acid content of PMMA.

PC/ASA blends having enhanced interfacial and mechanical properties

  • Kang, M.S.;Kim, C.K.;Lee, J.W.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Blend of bisphenol-A polycarbonate (PC) and (acrylonitrile-styrene-acrylic rubber) terpolymer (ASA) having excellent balance in the interfacial properties and mechanical strength was developed for the automobile applications. Since interfacial adhesion between PC and styrne-acrylonitrile copolymer (SAN) matrix of ASA is not strong enough, two different types of compatibilizers, i.e, diblock copolymer composed of tetramethyl polycarbonate (TMPC) and SAN (TMPC-b-SAN) and poly(methyl methacrylate) (PMMA) were examined to improve interfacial adhesion between PC and SAN. TMPC-b-SAN was more effective than PMMA in increasing interfacial adhesion between PC and SAN matrix of ASA (or weld-line strength of PC/ASA blend). When blend composition was fixed, PC/ASA blends exhibited similar mechanical properties except impact strength and weld-line strength. Impact strength of PCI ASA blend at low temperature was influenced by rubber particle size and its morphology. PC/ASA blends containing commercially available PMMA as compatibilizer also exhibited excellent balance in mechanical properties and interfacial adhesion.