DOI QR코드

DOI QR Code

Pretreatment on Corn Stover with Low Concentration of Formic Acid

  • Xu, Jian (Biosystems Department, National Laboratory for Sustainable Energy) ;
  • Thomsen, Mette Hedegaard (Biosystems Department, National Laboratory for Sustainable Energy) ;
  • Thomsen, Anne Belinda (Biosystems Department, National Laboratory for Sustainable Energy)
  • Published : 2009.08.31

Abstract

Bioethanol derived from lignocellulosic biomass has the potential to replace gasoline. Cellulose is naturally recalcitrant to enzymatic attack, and it also surrounded by the matrix of xylan and lignin, which enhances the recalcitrance. Therefore, lignocellulosic materials must be pretreated to make the cellulose easily degraded into sugars and further fermented to ethanol. In this work, hydrothermal pretreatment on corn stover at $195^{\circ}C$ for 15 min with and without lower concentration of formic acid was compared in terms of sugar recoveries and ethanol fermentation. For pretreatment with formic acid, the overall glucan recovery was 89% and pretreatment without formic acid yielded the recovery of 94%. Compared with glucan, xylan was more sensitive to the pretreatment condition. The lowest xylan recovery of 55% was obtained after pretreatment with formic acid and the highest of 75% found following pretreatment without formic acid. Toxicity tests of liquor parts showed that there were no inhibitions found for both pretreatment conditions. After simultaneous saccharification and fermentation (SSF) of the pretreated corn stover with Baker's yeast, the highest ethanol yield of 76.5% of the theoretical was observed from corn stover pretreated at $195^{\circ}C$ for 15 min with formic acid.

Keywords

References

  1. Baeza, J., S. Urizar, N. Erismann, J. Freer, E. Schmidt, and N. Duran. 1991. Organosolv pulping - V: Formic acid delignification of Eucalyptus globulus and Eucalyptus grandis. Bioresource Technol. 37: 1-6 https://doi.org/10.1016/0960-8524(91)90105-S
  2. Beery, K., R. Hendrickson, M. Brewer, N. Mosier, B. Dien, R. Dreschel, G. Welch, R. Bothast, and M. R. Ladisch. 2000. Incremental ethanol yields from processing corn fiber by thermal pretreatment and enzymatic hydrolysis. BTEC Paper 46, 219th National Meeting of the American Chemical Society, San Francisco, CA, Biotechnology Secretariat (BTEC), Biobased Processing to Chemicals V: Process Engineering Biochem. Biotechnol. 70/72: 99-111
  3. Bjerre, A. B. and E. Sorensen. 1992. Thermal decomposition of dilute aqueous formic acid solutions. Ind. Eng. Chem. Res. 31: 574-577 https://doi.org/10.1021/ie00006a022
  4. Brigham, J. S., W. S. Adney, and M. E. Himmel. 1996. Hemicellulases: Diversity and applications, pp. 119-141. In C. E. Wyman (ed.), Handbook on Bioethanol: Production and Utilization. Taylor & Francis, Washington, DC
  5. Cantarella, M., L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani. 2004. Effect of inhibitors released during steamexplosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Prog. 20: 200-206 https://doi.org/10.1021/bp0257978
  6. Chang, S. and M. Holtzapple. 2000. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84: 5-37 https://doi.org/10.1385/ABAB:84-86:1-9:5
  7. Chum, H. L. and R. P. Overend. 2001. Biomass and renewable fuel. Fuel Process Technol. 71: 187-195 https://doi.org/10.1016/S0378-3820(01)00146-1
  8. Dap$\acute{i}$a, S., V. Santos, and J. C. Parajo. 2002. Study of formic acid as an agent for biomass fractionation. Biomass Bioenergy 22: 213-221 https://doi.org/10.1016/S0961-9534(01)00073-3
  9. Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analysis apparatus, reagents, procedures and some applications. In: Agriculture Handbook No. 379. Agriculture Research Service, United States Department of Agriculture, Washington, U.S.A
  10. Greil, P. 2001. Biomorphous ceramics from lignocellulosics. J. Eur. Ceram. Soc. 21: 105-118 https://doi.org/10.1016/S0955-2219(00)00179-5
  11. Hansen, A. C., Q. Zhang, and P. W. L Lyne. 2005. Ethanoldiesel fuel blends: A review. Bioresource Technol. 96: 277-393 https://doi.org/10.1016/j.biortech.2004.04.007
  12. Kadam, K. L. and J. D. Mcmillan. 2003. Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresource Technol. 88: 17-25 https://doi.org/10.1016/S0960-8524(02)00269-9
  13. Kim, T. H. and Y. Y. Lee. 2006. Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresource Technol. 97: 224-232 https://doi.org/10.1016/j.biortech.2005.02.040
  14. Kim, T. H. and Y. Y. Lee. 2005. Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technol. 96: 2007-2013 https://doi.org/10.1016/j.biortech.2005.01.015
  15. Kim, T. H., J. S. Kim, C. Sunwoo, and Y. Y. Lee. 2003. Pretreatment of corn stover by aqueous ammonia. Bioresource Technol. 90: 39-47 https://doi.org/10.1016/S0960-8524(03)00097-X
  16. Klinke, H., A. H. Thomsen, and B. K. Ahring. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pretreatment of biomass. Appl. Microbiol. Biotechnol. 66: 10-26 https://doi.org/10.1007/s00253-004-1642-2
  17. Ladisch, M. R., K. Kohlmann, P. Westgate, J. Weil, and Y. Yang. 1998. Processes for treating cellulosic material. U.S. Patent 5,846,787
  18. Linde, M., E. L. Jakobsson, M. Galbe, and G. Zacchi. 2008. Steam pretreatment of dilute $H_2SO_4$-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 32: 326-332 https://doi.org/10.1016/j.biombioe.2007.09.013
  19. Lloyd, T. A. and C. E. Wyman. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technol. 96: 1967-1977 https://doi.org/10.1016/j.biortech.2005.01.011
  20. McMillan, J. D. 1994. Pretreatment of lignocellulosic biomass, pp. 292-324. In M. E. Himmel, J. O. Baker, and R. P. Overend (eds.), Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Washington, DC
  21. Mosier, N., R. Hendrickson, M. Ho-N-Sedlak, and M. R. Ladisch. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technol. 96: 1986- 1993 https://doi.org/10.1016/j.biortech.2005.01.013
  22. Nguyen, Q. A. 1993. Economic analyses of integrating a biomassto- ethanol plant into a pulp/saw mill, pp. 321-340. In J. N. Saddler (ed.), Bioconversion of Forest and Agricultural Residues. CAB International, Wallingford
  23. Ohgren, K., A. Rudolf, M. Galbe, and G. Zacchi. 2006. Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30: 863- 869 https://doi.org/10.1016/j.biombioe.2006.02.002
  24. Ohgren, K., J. Vehmaanpera, M. Siika-aho, M. Galbe, L. Viikari, and G. Zacchi. 2007. High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzyme Microb. Technol. 40: 607-613 https://doi.org/10.1016/j.enzmictec.2006.05.014
  25. Ohgren, K., R. Bura, G. Lesnickic, J. Saddlerb, and G. Zacchi. 2007. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem. 42: 834-839 https://doi.org/10.1016/j.procbio.2007.02.003
  26. Ohgren, K., R. Bura, J. Saddler, and G. Zacchi. 2007. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technol. 98: 2503- 2510 https://doi.org/10.1016/j.biortech.2006.09.003
  27. Peter, V., G. Walsum, and H. Shi. 2004. Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresource Technol. 93: 217-226 https://doi.org/10.1016/j.biortech.2003.11.009
  28. Poppius, K., J. Sundquist, and I. Wartiovaara. 1989. pp. 87-92. In J. F. Kennedy, G. O. Phillips, and P. A. Williams (eds.), Wood Processing and Utilization. Ellis Horwood, New York
  29. Ranatunga, T. D., J. Jervis, R. F. Helm, J. D. McMillan, and R. J. Wooley. 2000. The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: The role of inorganics, uronic acids and ether-soluble organics. Enzyme Microb. Technol. 27: 240-247 https://doi.org/10.1016/S0141-0229(00)00216-7
  30. Ruggiero, R., E. H. Machado, D. da Silva, S. Greler, A. Nourmamode, and A. Castellan. 1998. Bleached chemical pulp from Eucalyptus grandis wood produced by peroxyformic acid pulping and photochemical bleaching. Holzforsch 52: 325-332 https://doi.org/10.1515/hfsg.1998.52.3.325
  31. Saddler, J. N. 1993. Introduction, Biotechnology in Agriculture No. 9. CABI, U.K. pp. 1-11
  32. Saddler, J. N., L. Ramos, and C. Breul. 1993. Steam pretreatment of ignocellulosic residues, pp. 73-91. In J. N. Saddler (ed.), Bioconversion of Forest and Agricultural Residues. CAB International, Wallingford
  33. Sheehan, J. and M. Himmel. 1999. Enzymes, energy, and the environment: A strategic perspective on the U.S. Department of Energy's Research and Development Activities for Bioethanol. Biotechnol. Prog. 15: 817-827 https://doi.org/10.1021/bp990110d
  34. Sundquist, J. 1996. Summary of Milox research. Pap. Puu. 78: 92-95
  35. Torget, R., P. Werdene, M. Himmel, and K. Grohmann. 1990. Dilute acid pretreatment of short rotation woody and herbaceous crops. Appl. Biochem. Biotechnol. 24/25: 115-126 https://doi.org/10.1007/BF02920238
  36. Weil, J. R., M. Brewer, R. Hendrickson, A. Sarikaya, and M. R. Ladisch. 1998. Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl. Biochem. Biotechnol. 70/72: 99-111 https://doi.org/10.1007/BF02920127
  37. Wyman, C. E. 1994. Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresource Technol. 50: 3-16 https://doi.org/10.1016/0960-8524(94)90214-3
  38. Xu, F., C. F. Liu, Z. C. Geng, J. X. Sun, R. C. Sun, B. H. Hei, L. Lin, S. B. Wu, and J. Je. 2006. Characterisation of degraded organosolv hemicelluloses from wheat straw. Polym. Degrad. Stab. 91: 1880-1886 https://doi.org/10.1016/j.polymdegradstab.2005.11.002

Cited by

  1. Switchgrass pretreatment and hydrolysis using low concentrations of formic acid vol.86, pp.5, 2009, https://doi.org/10.1002/jctb.2573
  2. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops vol.4, pp.None, 2009, https://doi.org/10.1186/1754-6834-4-20
  3. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review vol.2011, pp.None, 2009, https://doi.org/10.4061/2011/787532
  4. Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment vol.35, pp.1, 2009, https://doi.org/10.1007/s00449-011-0589-9
  5. Comparison of Ultrasonic and CO 2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13044141
  6. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass vol.35, pp.2, 2009, https://doi.org/10.1002/ep.12257
  7. Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- A review vol.7, pp.2, 2009, https://doi.org/10.1007/s13399-017-0243-0
  8. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review vol.4, pp.None, 2017, https://doi.org/10.1186/s40643-017-0137-9
  9. Flow-Through Pretreatment of Corn Stover by Recycling Organosolv to Reduce Waste Solvent vol.11, pp.4, 2009, https://doi.org/10.3390/en11040879
  10. Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals vol.24, pp.4, 2009, https://doi.org/10.3390/molecules24040786
  11. Selective hemicellulose hydrolysis of Scots pine sawdust vol.9, pp.2, 2009, https://doi.org/10.1007/s13399-018-0357-z
  12. Experimentally designed corn biomass fractionation to obtain lignin nanoparticles and fermentable sugars vol.140, pp.None, 2019, https://doi.org/10.1016/j.indcrop.2019.111649
  13. Aqueous phase reforming of xylitol and xylose in the presence of formic acid vol.10, pp.15, 2009, https://doi.org/10.1039/d0cy00811g
  14. Nanotechnology-assisted production of value-added biopotent energy-yielding products from lignocellulosic biomass refinery - A review vol.344, pp.no.pa, 2022, https://doi.org/10.1016/j.biortech.2021.126171