Face Annotation System for Social Network Environments

소셜 네트웍 환경에서의 얼굴 주석 시스템

  • 최권택 (연세대학교 컴퓨터과학과) ;
  • 변혜란 (연세대학교 컴퓨터과학과)
  • Published : 2009.08.15

Abstract

Recently, photo sharing and publishing based Social Network Sites(SNSs) are increasingly attracting the attention of academic and industry researches. Millions of users have integrated these sites into their daily practices to communicate with online people. In this paper, we propose an efficient face annotation and retrieval system under SNS. Since the system needs to deal with a huge database which consists of an increasing users and images, both effectiveness and efficiency are required, In order to deal with this problem, we propose a face annotation classifier which adopts an online learning and social decomposition approach. The proposed method is shown to have comparable accuracy and better efficiency than that of the widely used Support Vector Machine. Consequently, the proposed framework can reduce the user's tedious efforts to annotate face images and provides a fast response to millions of users.

최근 사진 공유 기반의 소셜 네트웍 서비스의 발달로 수백만 명의 사람들이 인터넷 공간에서 온라인 커뮤니티 활동에 참여하고 있다. 본 논문에서는 이러한 소셜 네트웍 서비스 환경에서 얼굴 사진에 주석 정보를 부여하고 이를 검색할 수 있는 효과적인 방법론을 제안한다. 지속적으로 이용자와 이미지가 증가하는 방대한 데이터베이스를 취급해야하기 때문에 인식률 뿐만 아니라 계산 복잡도가 매우 낮아야 한다. 본 논문에 이러한 문제를 해결하기 위해 온라인 학습과 사회적 관계를 이용한 다중 분류기를 제안한다. 실험결과를 통해 제안된 방법은 보편적으로 사용되는 서포트 백터 머신과 비교해 향상된 인식률과 낮은 계산 복잡도를 보여줌으로써 사용자의 주석 횟수를 줄이고, 사용자에게 빠른 응답을 할 수 있음을 보여준다.

Keywords

References

  1. T. L. Berg, A. C. Berg, J. Edwards, and D.A. Forsyth, “Who's in the picture?,” Advances in Neural Information Processing Systems, pp. 137-144, 2005
  2. J. Yang and A. G. Hauptmann, “Naming every individual in news video monologues,” ACM inter-national conference on Muldtimedia, pp. 580-587, 2004 https://doi.org/10.1145/1027527.1027666
  3. Z. Jianke, S. C. H. Hoi, and M. R. Lyu, “Face annotation using transductive kernel fisher dis-criminant,” IEEE Trans. Multimedia, vol.10, no.1, pp.86-96, 2008 https://doi.org/10.1109/TMM.2007.911245
  4. A.C. Gallagher and T. Chen, “Using group prior to identify people in consumer images,” Computer Vision and Pattern Recognition, pp.1-8, 2007 https://doi.org/10.1109/CVPR.2007.383492
  5. M. Naaman, R. B. Yeh, H. G. Molina, and A. Paepcke, "Leveraging context to resolve identity in photo albums," ACM/IEEE-CS Joint conference on Digital libraries, 2005 https://doi.org/10.1145/1065385.1065430
  6. Y. Tian, W. Liu, R. Xiao, F. Wen, and X. Tang, "A face annotation framework with partial clu-stering and interactive labeling," Computer Vision and Pattern Recognition, pp.1-8, 2008 https://doi.org/10.1109/CVPR.2007.383282
  7. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” Com-puter Vision and Pattern Recognition, 2001 https://doi.org/10.1109/CVPR.2001.990517
  8. http://www.adobe.com
  9. Q. L. Tran, K.-A. Toh, and D. Srinivasan, "Ad-aptation to changes in multimodal biometric auth-entication," IEEE Conference on Cybernetics and Intelligent Systems, 2004 https://doi.org/10.1109/ICCIS.2004.1460722
  10. K.-A. Toh, Q.-L. Tran, and D. Srinivasan, "Ben-chmarking a reduced multivariate polynomial pattern classifier," IEEE Trans. Pattern Anal. Mach. Inteligence, vol.26, no.6, pp.740-755, 2004 https://doi.org/10.1109/TPAMI.2004.3
  11. A. Martinez and R. Benavente, "The AR Face Database," 1998
  12. A.S. Georghiades, P.N. Bellhumeur, and D.J. Krieg-man, "From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose," IEEE Trans. Pattern Anal. Mach. Intelligence, vol.23, no.6, pp.643-660, 2001 https://doi.org/10.1109/34.927464
  13. T. Sim, S. Baker, and M. Bsat, "The CMU Pose, Illumination, and Expression Database," IEEE Trans. Pattern Anal. Mach. Intelligence, vol.25, no.12, pp.1615-1618, 2003 https://doi.org/10.1109/TPAMI.2003.1251154
  14. N. Goel, G. Bebis, and A. Nefian, "Face recognition experiments with random projection," SPIE, 2005 https://doi.org/10.1117/12.605553
  15. http://sourceforge.net/projects/svm/