References
- Aida, Y. and M. J. Pabst. 1990. Removal of endotoxin from protein solutions by phase separation using Triton X-114. J. Immunol. Methods 132: 191-195 https://doi.org/10.1016/0022-1759(90)90029-U
- Bausinger, H., D. Lipsker, U. Ziylan, S. Manie, J. P. Briand, J. P. Cazenave, et al. 2002. Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur. J. Immunol 32: 3708-3713 https://doi.org/10.1002/1521-4141(200212)32:12<3708::AID-IMMU3708>3.0.CO;2-C
- Baykov, A. A., O. A. Evtushenko, and S. M. Avaeva. 1988. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171: 266-270 https://doi.org/10.1016/0003-2697(88)90484-8
- Benaroudj, N., B. Fang, F. Triniolles, C. Ghelis, and M. M. Ladjimi. 1994. Overexpression in Escherichia coli, purification and characterization of the molecular chaperone HSC70. Eur. J. Biochem. 221: 121-128 https://doi.org/10.1111/j.1432-1033.1994.tb18720.x
- Geladopoulos, T. P., T. G. Sotiroudis, and A. E. Evangelopoulos. 1991. A malachite green colorimetric assay for protein phosphatase activity. Anal. Biochem. 192: 112-116 https://doi.org/10.1016/0003-2697(91)90194-X
- Hauser, H. and S. Y. Chen. 2003. Augmentation of DNA vaccine potency through secretory heat shock protein-mediated antigen targeting. Methods 31: 225-231 https://doi.org/10.1016/S1046-2023(03)00136-1
- Hauser, H., L. Shen, Q. L. Gu, S. Krueger, and S. Y. Chen. 2004. Secretory heat-shock protein as a dendritic cell-targeting molecule: A new strategy to enhance the potency of genetic vaccines. Gene Ther. 11: 924-932 https://doi.org/10.1038/sj.gt.3302160
- Lipsker, D., U. Ziylan, D. Spehner, F. Proamer, H. Bausinger, P. Jeannin, et al. 2002. Heat shock proteins 70 and 60 share common receptors which are expressed on human monocyte-derived but not epidermal dendritic cells. Eur. J. Immunol. 32: 322-332 https://doi.org/10.1002/1521-4141(200202)32:2<322::AID-IMMU322>3.0.CO;2-0
- Malyala, P. and M. Singh. 2008. Endotoxin limits in formulations for preclinical research. J. Pharm. Sci. 97: 2041-2044 https://doi.org/10.1002/jps.21152
- Menoret, A. 2004. Purification of recombinant and endogenous HSP70s. Methods 32: 7-12 https://doi.org/10.1016/S1046-2023(03)00180-4
- Nadeau, K., A. Das, and C. T. Walsh. 1993. Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J. Biol. Chem. 268: 1479-1487
- Nadeau, K., M. A. Sullivan, M. Bradley, D. M. Engman, and C. T. Walsh. 1992. 83-Kilodalton heat shock proteins of trypanosomes are potent peptide-stimulated ATPases. Protein Sci. 1: 970-979 https://doi.org/10.1002/pro.5560010802
- Olson, C. L., K. C. Nadeau, M. A. Sullivan, A. G. Winquist, J. E. Donelson, C. T. Walsh, and D. M. Engman. 1994. Molecular and biochemical comparison of the 70-kDa heat shock proteins of Trypanosoma cruzi. J. Biol. Chem. 269: 3868-3874
- Raska, M., J. Belakova, M. Horynova, M. Krupka, J. Novotny, M. Sebestova, and E. Weigl. 2008. Systemic and mucosal immunization with Candida albicans hsp90 elicits hsp90-specific humoral response in vaginal mucosa which is further enhanced during experimental vaginal candidiasis. Med. Mycol. 46: 411-420 https://doi.org/10.1080/13693780701883508
- Raska, M., J. Belakova, N. K. Wudattu, L. Kafkova, K. Ruzickova, M. Sebestova, Z. Kolar, and E. Weigl. 2005. Comparison of protective effect of protein and DNA vaccines hsp90 in murine model of systemic candidiasis. Folia Microbiol. (Praha) 50: 77-82 https://doi.org/10.1007/BF02931297
- Sebela, M., T. Stosova, J. Havlis, N. Wielsch, H. Thomas, Z. Zdrahal, and A. Shevchenko. 2006. Thermostable trypsin conjugates for high-throughput proteomics: Synthesis and performance evaluation. Proteomics 6: 2959-2963 https://doi.org/10.1002/pmic.200500576
- Stosova, T., M. Sebela, P. Rehulka, O. Sedo, J. Havlis, and Z. Zdrahal. 2008. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus. Anal. Biochem. 376: 94-102 https://doi.org/10.1016/j.ab.2008.01.016
- Suzue, K., X. Zhou, H. N. Eisen, and R. A. Young. 1997. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl. Acad. Sci. U.S.A. 94: 13146-13151 https://doi.org/10.1073/pnas.94.24.13146
- Udono, H., T. Saito, M. Ogawa, and Y. Yui. 2004. Hsp-antigen fusion and their use for immunization. Methods 32: 21-24 https://doi.org/10.1016/S1046-2023(03)00182-8
- Valentinis, B., A. Capobianco, F. Esposito, A. Bianchi, P. Rovere-Querini, A. A. Manfredi, and C. Traversari. 2008. Human recombinant heat shock protein 70 affects the maturation pathways of dendritic cells in vitro and has an in vivo adjuvant activity. J. Leukoc. Biol. 84: 199-206 https://doi.org/10.1189/jlb.0807548
- Vanhove, M., S. Houba, J. b1motte-Brasseur, and J. M. Frere. 1995. Probing the determinants of protein stability: Comparison of class A beta-lactamases. Biochem. J. 308(Pt 3): 859-864 https://doi.org/10.1042/bj3080859
- Waugh, D. F. 1954. Protein-protein interactions. Adv. Protein Chem. 9: 325-437 https://doi.org/10.1016/S0065-3233(08)60210-7
- Wieland, A., M. Denzel, E. Schmidt, S. Kochanek, F. Kreppel, J. Reimann, and R. Schirmbeck. 2008. Recombinant complexes of antigen with stress proteins are potent CD8 T-cell-stimulating immunogens. J. Mol. Med. 86: 1067-1079 https://doi.org/10.1007/s00109-008-0371-x
- Ye, Z. and Y. H. Gan. 2007. Flagellin contamination of recombinant heat shock protein 70 is responsible for its activity on T cells. J. Biol. Chem. 282: 4479-4484 https://doi.org/10.1074/jbc.M606802200
Cited by
- Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged antigens: Preparation, structural study and immune vol.151, pp.2, 2011, https://doi.org/10.1016/j.jconrel.2011.01.016
- Antigen Cross-Presentation and Heat Shock Protein-Based Vaccines vol.64, pp.1, 2009, https://doi.org/10.1007/s00005-015-0370-x
- Nonpyrogenic Molecular Adjuvants Based on norAbu-Muramyldipeptide and norAbu-Glucosaminyl Muramyldipeptide: Synthesis, Molecular Mechanisms of Action, and Biological Activities in Vitro and in Vivo vol.60, pp.18, 2017, https://doi.org/10.1021/acs.jmedchem.7b00593
- Nonpyrogenic Molecular Adjuvants Based on norAbu-Muramyldipeptide and norAbu-Glucosaminyl Muramyldipeptide: Synthesis, Molecular Mechanisms of Action, and Biological Activities in Vitro and in Vivo vol.60, pp.18, 2017, https://doi.org/10.1021/acs.jmedchem.7b00593