DOI QR코드

DOI QR Code

Quality Control Probes for Spot-Uniformity and Quantitative Analysis of Oligonucleotide Array

  • Jang, Hyun-Jung (Institute for Genomic Medicine, GeneIn Co., Ltd) ;
  • Cho, Mong (Departments of Internal Medicine, Pusan National University, Medical School) ;
  • Kim, Hyung-Hoi (Departments of Laboratory Medicine, Pusan National University, Medical School) ;
  • Kim, Cheol-Min (Institute for Genomic Medicine, GeneIn Co., Ltd, Departments of Biochemistry, Pusan National University, Medical School) ;
  • Park, Hee-Kyung (PANAGENE Inc.)
  • Published : 2009.07.31

Abstract

Quality control QC for spot-uniformity is a critical point in fabricating an oligonucleotide array, and quantification of targets is very important in array analysis. We developed two new types of QC probes as a means of confirming the quality of the uniformity of attached probes and the quantification of targets. We compared the signal intensities and fluorescent images of the QC and target-specific probes of arrays containing only target-specific probes and those containing both QC and target-specific probes. In a comparison of quality control methods, it was found that the arrays containing QC probes could check spot-uniformity or spot defects during all processes of array fabrication, including after spotting, after washing, and after hybridization. In a comparison of quantification results, the array fabricated by the method using QC probes showed linear and regular results because it was possible to normalize variations in spot size and morphology and amount of attached probe. This method could avoid errors originating in probe concentration and spot morphology because it could be normalized by QC probes. There were significant differences in the signal intensities of all mixtures (P<0.05). This result indicates that the method using QC probes is more useful than the ordinary method for quantification of mixed target. In the quantification of mixed targets, this method could determine a range for mixed targets of various amounts. Our results suggest that methods using QC probes for array fabrication are very useful to the quality control of spots in the fabrication processes of quantitative oligonucleotide arrays.

Keywords

References

  1. Battaglia, C., G. Salani, C. Consolandi, L. R. Bernardi, and G. De Bellis. 2000. Analysis of DNA microarrays by nondestructive fluorescent staining using SYBRR$^{\circledR}$ green II. Biotechniques 29: 78-81
  2. Boa, Z., W. L. Ma, Z. Y. Hu, S. Rong, Y. B. Shi, and W. L. Zheng. 2002. A method for evaluation of the quality of DNA microarray spots. J. Biochem. Mol. Biol. 35: 532-535 https://doi.org/10.5483/BMBRep.2002.35.5.532
  3. Bodrossy, L. and A. Sessitsch. 2004. Oligonucleotide microarrays in microbial diagnostics. Curr. Opin. Microbiol. 7: 245-254 https://doi.org/10.1016/j.mib.2004.04.005
  4. Bodrossy, L., N. Stralis-Pavese, J. C. Murrell, S. Radajewski, A. Weilharter, and A. Sessitsch. 2003. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5: 566-582 https://doi.org/10.1046/j.1462-2920.2003.00450.x
  5. Bryant, P. A., D. Venter, R. Robins-Browne, and N. Curtis. 2004. Chips with everything: DNA microarrays in infectious diseases. Lancet Infect. Dis. 4: 100-111 https://doi.org/10.1016/S1473-3099(04)00930-2
  6. Call, D. R., D. P. Chandler, and F. Brockman, 2001. Fabrication of DNA microarrays using unmodified oligonucleotide probes. Biotechniques 30: 368-372, 374, 376 passim
  7. Chizhikov, V., M. Wagner, A. Ivshina, Y. Hoshino, A. Z. Kapikian, and K. Chumakov. 2002. Detection and genotyping of human group A rotaviruses by oligonucleotide microarray hybridization. J. Clin. Microbiol. 40: 2398-2407 https://doi.org/10.1128/JCM.40.7.2398-2407.2002
  8. Cho, J. C. and J. M. Tiedje. 2002. Quantitative detection of microbial genes by using DNA microarrays. Appl. Environ. Microbiol. 68: 1425-1430 https://doi.org/10.1128/AEM.68.3.1425-1430.2002
  9. Clewley, J. P. 2004. A role for arrays in clinical virology: Fact or fiction? J. Clin. Virol. 29: 2-12 https://doi.org/10.1016/j.jcv.2003.08.002
  10. Dawson, E. D., A. E. Reppert, K. L. Rowlen, and L. R. Kuck. 2005. Spotting optimization for oligo microarrays on aldehydeglass. Anal. Biochem. 341: 352-360 https://doi.org/10.1016/j.ab.2005.03.029
  11. Hautaniemi, S., H. Edgren, P. Vesanen, M. Wolf, A. K. J$\ddot{a}$rvinen, O. Yli-Harja, J. Astola, O. Kallioniemi, and O. Monni. 2003. A novel strategy for microarray quality control using Bayesian networks. Bioinformatics 19: 2031-2038 https://doi.org/10.1093/bioinformatics/btg275
  12. Hessner, M. J., V. K. Singh, X. Wang, S. Khan, M. R. Tschannen, and T. C. Zahrt. 2004. Utilization of a labeled tracking oligonucleotide for visualization and quality control of spotted 70-mer arrays. BMC Genomics 5: 12 https://doi.org/10.1186/1471-2164-5-12
  13. Hessner, M. J., X. Wang, K. Hulse, L. Meyer, Y. Wu, S. Nye, S. W. Guo, and S. Ghosh. 2003. Three color cDNA microarrays: Quantitative assessment through the use of fluorescein-labeled probes. Nucleic Acids Res. 31: e14 https://doi.org/10.1093/nar/gng014
  14. Jang, H. J., M. Cho, J. Heo, H. H. Kim, H. K. Jun, W. W. Shin, B. M. Cho, H. K. Park, and C. M. Kim. 2004. Oligonucleotide chip for detection of lamivudine-resistant hepatitis B virus. J. Clin. Microbiol. 42: 4181-4188 https://doi.org/10.1128/JCM.42.9.4181-4188.2004
  15. Park, H. K., H. J. Jang, E. S. Song, H. H. Chang, M. K. Lee, S. H. Jeong, J. H. Park, B. C. Kang, and C. M. Kim. 2005. Detection and genotyping of Mycobacterium species from clinical isolates and specimens by oligonucleotide array. J. Clin. Microbiol. 43: 1782-1788 https://doi.org/10.1128/JCM.43.4.1782-1788.2005
  16. Rickman, D. S., C. J. Herbert, and L. P. Aggerbeck. 2003. Optimizing spotting solutions for increased reproducibility of cDNA microarrays. Nucleic Acids Res. 31: e109 https://doi.org/10.1093/nar/gng109
  17. Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470 https://doi.org/10.1126/science.270.5235.467
  18. Sergeev, N., D. Volokhov, V. Chizhikov, and A. Rasooly. 2004. Simultaneous analysis of multiple Staphylococcal enterotoxin genes by an oligonucleotide microarray assay. J. Clin. Microbiol. 42: 2134-2143 https://doi.org/10.1128/JCM.42.5.2134-2143.2004
  19. Shearstone, J. R., N. E. Allaire, M. E. Getman, and S. Perrin. 2002. Nondestructive quality control for microarray production. Biotechniques 32: 1051-1057
  20. Tran, P. H., D. A. Peiffer, Y. Shin, L. M. Meek, J. P. Brody, and K. W. Cho. 2002. Microarray optimizations: Increasing spot accuracy and automated identification of true microarray signals. Nucleic Acids Res. 30: e54 https://doi.org/10.1093/nar/gnf053
  21. Volokhov, D., A. Rasooly, K. Chumakov, and V. Chizhikov. 2002. Identification of Listeria species by microarray-based assay. J. Clin. Microbiol. 40: 4720-4278 https://doi.org/10.1128/JCM.40.12.4720-4728.2002

Cited by

  1. The Impact of Photobleaching on Microarray Analysis vol.4, pp.3, 2009, https://doi.org/10.3390/biology4030556
  2. Optimization of Cyanine Dye Stability and Analysis of FRET Interaction on DNA Microarrays vol.5, pp.4, 2009, https://doi.org/10.3390/biology5040047