APPROXIMATION METHOD FOR SCATTERED DATA FROM SHIFTS OF A RADIAL BASIS FUNCTION

  • Published : 2009.09.30

Abstract

In this paper, we study approximation method from scattered data to the derivatives of a function f by a radial basis function $\phi$. For a given function f, we define a nearly interpolating function and discuss its accuracy. In particular, we are interested in using smooth functions $\phi$ which are (conditionally) positive definite. We estimate accuracy of approximation for the Sobolev space while the classical radial basis function interpolation applies to the so-called native space. We observe that our approximant provides spectral convergence order, as the density of the given data is getting smaller.

Keywords

References

  1. M. Abramowitz and I. Stegun, A Handbook of Mathematical Functions, Dover Publications, New York, 1970.
  2. M. D. Buhmann, New developments in the theory of radial basis functions interpolation, Multivariate Approximation: From CAGD to Wavelets (K. Jetter, F.I. Utreras eds.), World Scientific, Singapore, (1993), 35-75.
  3. N. Dyn, Interpolation and Approximation by Radial and Related Functions, Approximation Theory VI, (C. K. Chui, L. L. Schumaker and J. Ward eds.), Academic press, (1989), 211-234.
  4. D. Levin, The approximation power of moving least-squares, Math. Comp. 67 (1998), 1517-1531. https://doi.org/10.1090/S0025-5718-98-00974-0
  5. C. A. Micchelli, Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Functions, Constr. Approx. 2 (1986), 11-22. https://doi.org/10.1007/BF01893414
  6. W. R. Madych, S. A. Nelson, Multivariate interpolation and conditionally positive function I, Approximation Theory and its Application 4 (1988), no 4, 77-89.
  7. W. R. Madych, S. A. Nelson, Multivariate interpolation and conditionally positive function II, Math. Comp. 54 (1990), 211-230. https://doi.org/10.1090/S0025-5718-1990-0993931-7
  8. W. R. Madych, S. A. Nelson, Bounds on Multivariate Polynomials and Exponential Error Estimates for Multiquadric Interpolation, J. of Approx Th 70 (1992), 94-114. https://doi.org/10.1016/0021-9045(92)90058-V
  9. M. J. D. Powell, The Theory of Radial basis functions approximation in 1990, Advances in Numerical Analysis Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions (W.A. Light ed.), Oxford University Press, (1992), 105-210.
  10. R. Schaback, Error Estimates and Condition Numbers for Radial Basis Function Interpolation , Adv. in Comp. Math. 3 (1995), 251-264. https://doi.org/10.1007/BF02432002
  11. R. Schaback, Approximation by Radial Functions with Finitely Many Centers, Constr. Approx. 12 (1996), 331-340. https://doi.org/10.1007/BF02433047
  12. Z. Wu and R. Shaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), 13-27. https://doi.org/10.1093/imanum/13.1.13
  13. J. Yoon, Approximation in Lp(Rd) from a Space Spanned by the Scattered Shifts of Radial Basis Function , Math. Comp 72 (2003), 1349-1367. https://doi.org/10.1090/S0025-5718-02-01498-9
  14. J. Yoon, Sobolev Type Approximation Order by Scattered Shifts of a Radial Basis Function, J. Appl. Math. & Computing 23 (2007), 435-443.