DOI QR코드

DOI QR Code

Molecular Biological Diagnosis of Meloidogyne Species Occurring in Korea

  • Oh, Hyung-Keun (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Bae, Chang-Hwan (Biological Resources Research Department, National Institute of Biological Resources) ;
  • Kim, Man-Il (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Wan, Xinlong (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Oh, Seung-Han (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Han, Yeon-Soo (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Hyang-Burm (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Kim, Ik-Soo (College of Agriculture & Life Sciences, Chonnam National University)
  • Published : 2009.09.30

Abstract

Root-knot nematode species, such as Meloidogyne hapla, M. incognita, M. arenaria, and M. javanica are the most economically notorious nematode pests, causing serious damage to a variety of crops throughout the world. In this study, DNA sequence analyses were performed on the D3 expansion segment of the 28S gene in the ribosomal DNA in an effort to characterize genetic variations in the three Meloidogyne species obtained from Korea and four species from the United States. Further, PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism), SCAR (Sequence Characterized Amplified Region) PCR and RAPD (Randomly Amplified Polymorphic DNA) were also utilized to develop methods for the accurate and rapid species identification of the root-knot nematode species. In the sequence analysis of the D3 expansion segment, only a few nucleotide sequence variations were detected among M. incognita, M. arenaria, and M, javanica, but not M. hapla. As a result of our haplotype analysis, haplotype 5 was shown to be common in M. arenaria, M. incognita, M. javanica, but not in the facultatively parthenogenetic species, M. hapla. PCR-RFLP analysis involving the amplification of the mitochondrial COII and large ribosomal RNA (lrRNA) regions yielded one distinct amplicon for M. hapla at 500 bp, thereby enabling us to distinguish M. hapla from M. incognita, M. arenaria, and M. javanica reproduced via obligate mitotic parthenogenesis. SCAR markers were used to successfully identify the four tested root-knot nematode species. Furthermore, newly attempted RAPD primers for some available root-knot nematodes also provided some species-specific amplification patterns that could also be used to distinguish among root-knot nematode species for quarantine purposes.

Keywords

References

  1. Bae, C. H., Szlanski, A. L. and Robbins, R. T. 2008. Molecular analysis of lance nematode, Hoplolaimus spp., using first internal transcribed spacer and the D1-D3 Expansion segments of 28S Ribosomal DNA. J. Nematol. 40:201-209
  2. Baum, T. J., Gresshoff, P. M., Lewis, S. A. and Dean, R. A. 1994. Characterization and phylogenetic analysis of four root-knot nematode spdcies using DNA amplification fingerprinting and automated polyacrylamide gel electrophoresis. Mol. Plant-Microbes Interact. 7:39-47 https://doi.org/10.1094/MPMI-7-0039
  3. Blok, V. C., Phillips, M. S., McNiol, J. and Fargette, M. 1997. Genetic variation in tropical Meloidogyne spp. as shown by RAPDs. Fundam. Appl. Nematol. 20:127-133
  4. Castangnone-Sereno, P. 2006. Genetic variability and adaptive evolution in parthoenogenetic root-knot nematodes. Heredity 96:282-289 https://doi.org/10.1038/sj.hdy.6800794
  5. Castagnone-Sereno, P., Bongiovanni, M. and Dalmasso, A. 1993. Stable virulence against the tomato resistance Mi gene in the parthenogenetic root-knot nematode Meloidogyne incognita. Phytopathology 83:803-805 https://doi.org/10.1094/Phyto-83-803
  6. Chen, P., Robetrs, P. A., Metcalf, A. E. and Hyman, B. C. 2003. Nucleotide substitution patterning within the Meloidogyne rDNA D3 region and its evolutionary implications, J. Nematol. 35:404-410
  7. Cherry, T., Szalanski, A. L., Todd, T. C. and Powers, T. O. 1997. The internal transcribed spacer region of Belonolatimus (Nemata, Belonolaimidae). J. Nematol. 29:23-29
  8. Cho, M. R., Lee, B. C., Kim, D. S., Jeon, H. Y., Yiem, M. S. and Lee, J. O. 2000. Distribution of plant parasitic nematodes in fruit vegetable production area in Korea and idenfigication of root-knot nematodes by enzyme phenotypes, Kor. J. Appl. Entomol. 39:123-129
  9. Cho, M. R., Lee, G. Y., Kim, J. S. and Yoo, D. L. 2006. Occurrence of plant parasitic nematodes in major potato production areas and PCR indentification of root-knot nematodes. Kor. J. Appl. Entomol. 45:79-85
  10. De-Ley, P., Deley, I. T., Morris, K., Abebe, E., Mundoocampo, M., Yoder, M., Heras, J., Waumann, D., Rocha-olivarres, A., Jayburr, A. H., Baldwin, J. G. and Thomas, W. K. 2005. An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barvoding. J. Phil. Trans. Royal Soc. 360:1945-1958 https://doi.org/10.1098/rstb.2005.1726
  11. Duncan, L. W., Inserra, R. N., Thomas, W. K., Dunn, D., Mustika, I., Frisse, L. M., Mendes, M. L., Morris, K. and Kaplan, D. T. 1999. Molecular and morphological analysis of isolates of Pratylenchus coffeae and closely related species. Nematropica 29:61-76
  12. EI-Ghore, A. A., Haroon, S., El-Rheem, M. A. and Abdella, E. 2004. Development of specific SCAR-markers for Meloidogyne incognita and Meloidogyne javanica. Arab J. Biotech. 7:37-44
  13. Han, H. R., Cho, M. R., Jeon, H. Y., Lim, C. K. and Jang, H. I. 2004. PCR-RELP indentification of three major Meloidogyne species in Korea. J. Asia-Pacific Entomol. 7:171-175 https://doi.org/10.1016/S1226-8615(08)60212-5
  14. Hartman, K. M. and Sasser, J. N. 1985. Identification of Meloidogyene species on the basis of identification host test and perineal pattern morphology. In: An advanced treatise on Meloidogyne, Vol. 2. Methodology, ed. K. R. Barker, C. C. Carter, and J. N. Sasser, pp. 69-77. North Carolina state University Graphics. Raleigh, NC.
  15. Hugall, A., Stanton, J. and Mortiz, C. 1999. Reticulate Evolution and the origins of ribosomal internal transcribed spacer diversity in apomictic Meloidogyne. Mol. Biol. Evol. 16:157-164 https://doi.org/10.1093/oxfordjournals.molbev.a026098
  16. Jianhua, X., Lid, P., Meng, Q. and Long, H. 2004. Characterisation of Meloidogyne species from China using isozyme phernotyupes and amplified mitochondrial DNA restriction fragment length polymorphism. Eur. J. Plant Pathol. 110:309-315 https://doi.org/10.1023/B:EJPP.0000019800.47389.31
  17. Karssen, G. and Van Hoenselaar, T. 1998. Revisison of the genus Meloidogyne Goldi, 1892 (Nermatoda: Heteroderidae) in Europe. Nematologica 44:713-788 https://doi.org/10.1163/005725998X00096
  18. Orui, Y. 1998. Identification of Japanese species of the genus Meloidogyne (nematoda: Meloidogynidae) by PCR-RFLP analysis. Appl. Entomol. Zool. 33:43-51 https://doi.org/10.1303/aez.33.43
  19. Park, S. D., Park, S. D., Choi, B. S. and Choi, Y. E. 1994. Annual phenology of root-knot nematode in the medicinal herb (Paeonia lactiflora) field. Kor. J. Appl. Entomol. 33:159-162
  20. Powers, T. O. and Harris, T. S. 1993. A polymerase chain reaction method for identification of five major Meloidogyne species. J. Nematol. 25:1-6
  21. Powers, T. O., Todd, T. C., Burnell, A. M., Murray, P. C. B., Fleming, C. C., Szalanski, A. L., Adamas, B. J. and Harris, T. S. 1997. The rDVA internal transcribed spacer region as a taxonomic marker for nematodes. J. Nematol. 29:441-450
  22. Randing, O., Bongiovanni, M., Carneiro, R. M. D. G. and Castagnone-Sereno, P. 2002. Genetic diversity of root-kont nematodes from Brazil and development of SACR markers specific for the coffee-damaging species. Genome 45:862-870 https://doi.org/10.1139/g02-054
  23. Subbotin, S. A., Halford, P. D., Warry, A. and Perry, R. N. 2000. Variations in ribosomal DNA sequences and phylogeny of Globodera parasitising solanaceous plants. Nematology 2:591-604 https://doi.org/10.1163/156854100509484
  24. Szalanski, A. L., Sui, D. D., Harris, T. S. and Powers, T. O. 1997. Identification of cyst nematodes of agronomic and regulatory concern with PCR-RFLP of ITS1. J. Nematol. 29:255-267
  25. Thomson, J. D., Cibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins D. G. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:173-216
  26. Zheng, J. W., Subbotin, S. A., Waeyenberge, L. and Moens, M. 2000. Molecular characterisation of Chinese Heterdera glycines and H. avenae populations based on RFLPs and sequences of rDNA-ITS regions. Russian J. Nematol. 8:109-113
  27. Zijlstra, C., Donkers-Venne, D. T. H. M. and Fargette, M. 2000. Identification of Meloidogyne incognita, M. Javanica and M. arenaria using sequence characterized amplified region (SCAR) based on PCR assays. Nematology 2:847-853 https://doi.org/10.1163/156854100750112798
  28. Zijlstra, C., Lever, A. E. M., Uenk, B. J. and Van-Silfhout C. H. 1995. Differences between ITS regions of isolates of the root-knot nematodes Meloidogyne hapla and M. chitwoodi. Phyto-pathology 85:1231-1237

Cited by

  1. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium vol.30, pp.3, 2014, https://doi.org/10.5423/PPJ.OA.02.2014.0013
  2. Differences in parasitism of Meloidogyne incognita and two genotypes of M. arenaria on Solanum torvum in Japan vol.165, pp.9, 2017, https://doi.org/10.1111/jph.12594
  3. Resistance of Cowpea Cultivars to Meloidogyne arenaria and M. incognita in Korea vol.27, pp.12, 2018, https://doi.org/10.5322/JESI.2018.27.12.1241