DOI QR코드

DOI QR Code

Development of Temperature Compensated Micro Cone by using Fiber Optic Sensor

광섬유를 이용한 온도 보상형 마이크로콘의 개발

  • 김래현 (고려대학교 건축.사회환경공학부) ;
  • 이우진 (고려대학교 건축.사회환경공학부) ;
  • 윤형구 (고려대학교 건축.사회환경공학부) ;
  • 이종섭 (고려대학교 건축.사회환경공학부)
  • Received : 2009.04.15
  • Accepted : 2009.05.28
  • Published : 2009.07.31

Abstract

Mechanical device using the load cell or strain gage sensor can be influenced by tempearute changes because temperature change can cause a shift in the load cell or straing gage output at zero loading. In this paper, micro cone penetrometers with 1~7mm in diameter, are developed by using an optical fiber sensor (FBG: Fiber Bragg Grating) to compensate the continous temperature change during cone penetration test. Note the temperature compensated method using optical fiber sensor which has hair-size in diameter, and is not affected by environmental conditions because the measured data is the wavelength shifting of the light instead of the intensity of the electric voltage. Temperature effect test shows that the output voltage of strain gage changes and increases with an increase in the temperature. A developed FBG cone penetrometer, however, achieves excellent temperature compensation during penetration, and produces continuous change of underground temperature. In addition, the temperature compensated FBG cone shows the excellent sensitivity and detects the interface of the layered soils with higher resolution. This study demonstrates that the fiber optic sensor renders the possibility of the ultra small size cone and the new fiber optic cone may produce more reliable temperature compensated tip resistance.

온도 변화에 의하여 로드셀이나 스트레인 게이지의 결과값이 변하기 때문에 로드셀이나 전기저항식 변형율계를 이용하는 기계적 장치는 주변 온도의 변화에 의하여 영향을 받는다. 본 연구에서는 기존의 전기저항식 변형율계 타입의 콘이 가지는 문제점과 한계를 극복하고 관입과 동시에 연속적으로 온도보상이 가능한 직경 1~7mm의 초소형 광섬유 마이크로콘을 개발하였다. 광섬유는 머리카락 굵기의 작은 직경을 가지고 있어 원하는 크기의 센서를 구성할 수 있고 전기적 신호인 전압을 측정하는 것이 아니라 빛의 파장변화를 감지하여 변형율로 변환하게 되므로 주변 조건에 의한 간섭 영향이 거의 없다. 개발된 콘의 온도보상 효과를 검증하기 위해 외력이 없는 상태에서 콘 주변의 온도를 변화시키는 온도시험을 실시하였다. 주변 온도에 따라 측정전압이 변화되는 전기저항식 변형률계 콘과는 달리 광섬유 센서를 적용한 콘은 일정한 값을 유지하는 것으로 나타났으며 관입과 동시에 지중의 온도변화를 연속적으로 확인할 수 있었다. 또한, 다층지반 콘관입시험에서는 관입되는 동안 교란영역이 적고 분해능이 뛰어나 선단지지력의 변화만으로도 다층지반의 경계를 명확하게 탐지할 수 있는 것으로 분석되었다. 본 연구에서는 광섬유 센서를 이용한 초소형 마이크로콘으로 다층지반을 효과적으로 탐지할 수 있으며 지중의 온도 영향이 고려된 순수한 선단저항력을 획득할 수 있음을 보여준다.

Keywords

References

  1. 김기수(2004) 광섬유 센서를 이용한 Beam-column 조인트 하중에 따른 변위계측, 한국소음진동공학회 논문집, 한국소음진동공학회, 제15권, 제1호, pp. 3-11.
  2. 이종섭, 신동현, 윤형구, 이우진(2008) 초소형 마이크로콘 관입시험기의 개발 및 적용, 한국지반공학회 논문집, 한국지반공학회, 제24권, 제2호, pp. 77-86.
  3. 정달우, 권일범, 최낙삼 (2005) 온도 보상형 Double FBG 센서의 제작과 기계적 변형률 측정시험, 비파괴검사학회지, 한국비파괴검사학회, 제25권, 제5호, pp. 356-361.
  4. Ahmadi, M.M. and Robertson, P.K. (2005) Thin-layer effects on the CPT qc measurement, Canadian Geotechnical Journal, Vol. 42, No. 5, pp. 1302-1317. https://doi.org/10.1139/t05-036
  5. Almeida, M. and Parry, H. (1985) Small cone penetrometer tests and piezocone tests in laboratory consolidated clays, Geotechnical Tesing Journal, Vol. 8, No. 1, pp. 14-24. https://doi.org/10.1520/GTJ10852J
  6. DeJong, J.T., DeGroot, D. J., Yafrate, N.J., and Jabubowski, J. (2003) Detection of soil layering using a miniature piezoprobe, Soil Rock America 2003, Boston, MA, pp. 151-156.
  7. DeJong, J.T., Yafrate, N.J., and DeGroot, D.J. (2007) Design of a miniature piezoprobe for high resolution stratigraphic profiling, Geotechnical Tesing Journal, Vol. 30, No. 4, pp. 1-11.
  8. De Lima, D. and Tumay, M.T. (1991) Scale effects in cone penetration tests, Proceedings, Geotechnical Engineering Congress 1991, ASCE, Boulder, Vol. 1, pp. 38-51.
  9. Esquivel, E. and Silva, C. (2000) Miniatue piezocone for use in centrifuge testing, Innovations and Applications in Geotechnical Site Characterization, ASCE Geotechnical Special Publication, No. 97, pp. 118-129.
  10. Gornall, W. and Amarel, T. (2003) Applications and Techniques for Fiber Bragg Grating Sensor Measurements, EXFO Bureligh Products Group Inc., NY.
  11. Hird, C.C., Johnson, P., and Sills, G.C. (2003) Performance of miniature piezocones in thinly layered soils, Geotechnique, Vol. 53, No. 10, pp. 885-900. https://doi.org/10.1680/geot.2003.53.10.885
  12. Kanellopoulos, S.E., Handerek, V.A., and Rogers, A.J. (1995) Simultaneous strain and temperature sensing with photogenerated in-fiber gratings, Optics Letters, Vol. 20, No. 3, pp. 333-335. https://doi.org/10.1364/OL.20.000333
  13. Kersey, A.D., Davis, M.A., Patrick, H.J., LeBlanc, M, Koo, K.P.,Askins, C.G., Putnam, M.A., and Friebele, J. (1997) Fiber grating sensors, Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1442-1463. https://doi.org/10.1109/50.618377
  14. Liu, T., Fernando, G.F., Zhang, L., Bennion, I., Rao, Y.J., and Jackson, D.A. (1997) Simultaneous strain and temperature measurement using a combinded fiber bragg grating/extrinsic fabry-perrot sensor, Proc. of the 12th International Conference on Optical Fiber Sensors, pp. 40-43.
  15. Liu, Z., Shi, B., and Sheng, D. (2006) A micropenetrometer for detecting structural strength inside soft soils, Geotechnical Testing Journal, ASTM, Vol. 29, No. 6, pp. 15-22.
  16. Lunne, T., Eidsmoen, T., Gillespie, D., and Howland, J.D. (1986) Laboratory and field evaluation of cone penetrometers, Proceedings of the ASCE Specialty Conference In Situ ’86: Use of In Situ Testes in Geotechnical Engineering, Blacksburg, pp.714-729.
  17. Lunne, T., Robertson, P.K., and Powell, J.J.M. (1997) Cone Penetration Testing in Geotechnical Practice, Blakie Academic, Great Britain, London.
  18. Rao, Y.J. (1999) Recent progress in applications of in-fiber bragg grating sensors, Optics and lasers in Engineering, Vol. 31, No. 4, pp. 297-324. https://doi.org/10.1016/S0143-8166(99)00025-1
  19. Shin, D.H. (2008) Detection of Smear Zone Using Micro Cone and Electrical Resistance Probe, Master. D. Thesis, Department of Civil and Environmental Engineering, Korea University, Seoul.
  20. Spirin, V.V., Shlyagin, M.G. Miridonov, S.V., and Marquez, I. (2001) Temperature-compensated strain measurement using differential double bragg grating technique, Optics & Laser Technology, Vol. 33, No. 1, pp. 43-46. https://doi.org/10.1016/S0030-3992(00)00115-8
  21. Tumay, M.T., Kurup, P.U., and Boggess, R.L. (1998) A continuous intrusion electronic miniature cone penetration test (CIMCPT) system for site characterization, Proc. of Int. Conf. on Site Charatcterization 98, Atlanta, GA, Vol. 2, pp. 1183-1188.
  22. Tumay, M.T. and Kurup, P.U. (2001) Development of a continuous intrusion miniature cone penetration test system for subsurface explorations, Soils and Foundations, Vol. 41, No. 6, pp. 129-138. https://doi.org/10.3208/sandf.41.6_129
  23. Tumay, M.T., Titi, H.H., Senneset, K., and Sandven, R. (2001) Continuous intrusion miniature piezocone penetration test in quick soil deposit, Proc. 15th Int. Conf. Soil Mech. Geotech. Engng, Istanbul, Vol. 1, pp. 523-526.
  24. Xu, M.G., Archambault, J.L., Reekie, L., and Dakin, J.P. (1994) Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors, Electronics Letters, Vol. 30, No. 13, pp. 1085-1087. https://doi.org/10.1049/el:19940746
  25. Yafrate, N.J. (2004) The Detection of Soil Layering with a Miniature Piezoprobe, Master of Science, University of Massachusetts Amherst.
  26. Yafrate, N.J. and DeJong, J.T. (2005) Detection stratigraphic interfaces and thin layering using a miniature piezoprobe, Geo Frontier 2005, ASCE, Austin, Texas, GSP 138, pp. 2103-2113.
  27. Yun, T.S. (2005) Mechanical and Thermal Study of Hydrate Bearing Sediments, Ph.D. Thesis, Georgia Institute of Technology, Atlanta.
  28. Zhou, Z., Thomas, W.G., Luke, H., and Ou, J. (2003) Techniques of advanced FBG sensors: Fabrication, demodulation, encapsulation and their application in the structural health monitoring of bridges, Pacific Science Review, Vol. 5, No. 1, pp. 116-121.