Sedimentary Environment Change in Mid-channel Bar of the Lower Geum River Using Multi-temporal Satellite Data

다중시기 영상자료를 이용한 금강하류의 하중도 퇴적환경 변화

  • Hong, Ki-Byung (Department of Geographic Information, Kongju National University) ;
  • Jang, Dong-Ho (Department of Geography, Kongju National University)
  • Received : 2009.05.21
  • Accepted : 2009.06.22
  • Published : 2009.06.30

Abstract

This study aims to analyze the sedimentary environment change in mid-channel bar of the lower Geum river basin after the construction of the estuary barrage using multi-temporal satellite data and GIS. The sedimentary environment changes were observed in mid-channel bar areas. The mid-channel bar F was found to have been newly formed for 10 years(1996-2006), whereas the mid-channel bar B located between mid-channel bar A and C has disappeared by erosion during the same periods. When examined by section, the areas of the mid-channel bar in the upper stream section from the Yipo's reference point generally increased due to the prevailing sedimentary environments, and those of the downstream section decreased where corrosive environments are dominant. In ternms of the centroid movement, the mid-channel bars grew up toward the downstream by switching erosion and accumulation, as sedimentation was prevailing in the downstream area of mid-channel bars and corrosion was dominant in the upper stream. Through grain size analysis, the study areas are divided into three sections according to the average grain size. In Section I, the mid-channel bars were formed as a result of sedimentary process of tides in the past. In Section II, the mid-channel bars were formed partly through the sedimentary process of rivers although the sedimentary process of tides is prevailing. In Section III, the mid-channel bars were formed mainly through the sedimentary process of rivers, even if it showed the sedimentary process of tides in the past.

Keywords

References

  1. 강승삼, 1980, 한국 하천지형의 변화 -영산강을 중심으로-, 지리학연구, 5, 229-249
  2. 농어촌진흥공사, 1994, 금강(1)지구 대단위 농업종합개발사업 사후환경영향조사 결과보고서(상반기)
  3. 금강사업단, 1994, 92'.93'금강하구둑 관리연보,농어촌진흥공사
  4. 김성환, 2005, 하구둑 건설 이후 낙동강 하구역 삼각주 연안사주의 지형변화, 대한지리학회지, 40(4), 416-427
  5. 김장수, 장동호, 2009, 하구둑 건설 후의 금강하류 유역의 하도내 퇴적환경 연구, 한국지형학회지, 16(1), 1-15
  6. 김종일, 1994, 영산강 곡류 절단부에서의 하도변화에 관한 연구, 한국지형학회지, 1(1), 41-59
  7. 박노욱, 장동호, 지광훈, 2006, 태풍 루사에 의한 강릉 사천천 주변 퇴적 환경 변화: 다중 시기 원격탐사 자료를 이용한 정보 분석, 한국지구과학회지, 27(1), 83-94
  8. 손명원, 1986, 댐건설로 인한 하도형태의 변화 -대청댐 하류구간을 사례로-, 지리학, 33, 37-44
  9. 오경섭, 2008, 경부운하 건설.유지를 감당할 수 없는 한국 하천지형 조건, 한반도 대운하와지형환경 두 번째 심포지엄, 23-27
  10. 연합뉴스, 2009, 서천군"금강하구둑 일부 철거 건의", 2009,02,11 뉴스
  11. 이 전, 손 일, 1998, 남강 하류 범람원의 토지이용과 농업형태 변화에 관한 연구, 한국지역지리학회지, 4(2), 31-47
  12. 장동호, 지광훈, 이봉주, 1995, Landsat 자료를 이용한 금강하류의 충적주 환경변화에 관한연구, 대한원격탐사학회지, 11(2), 59-73
  13. 정주영, 이만우, 조강현, 최병희, 2000, 인천 논현동 일대 염습지의 식물다양성과 보존방안, 환경생물학회지, 18(3), 337-345
  14. 한강홍수통제소, 1996~2008, 한국수문조사연보
  15. 환경부, 국립환경과학원, 2007, 2007년도 겨울철 조류 동시센서스
  16. 황재홍, 정원석, 나기창, 2005, GIS를 이용한 남한의 지질 및 지리적 중심에 관한 연구와 조사, 한국지구과학회지 추계학술발표회 논문집, 437-445
  17. 허위행, 이우신, 임신재, 2005, 시화호 인공습지 조성 후 조류군집의 변화, 한국환경생태학회지, 19(3), 279-286
  18. Bryant, R. G. and Gilvear, D. J., 1999, Quantifying geomorphic and riparian land cover changes either side of a large flood event using airborne remote sensing: River Tay, Scotland, Geomorphology, 29,307-321 https://doi.org/10.1016/S0169-555X(99)00023-9
  19. Henry, C. P. and Amoros, C., 1996, Restoration ecology of riverine wetlands. III. Vegetation survey and monitoring optimization, Ecological Engineering, 7(1), 35-58 https://doi.org/10.1016/0925-8574(95)00064-X
  20. Grayson, J. E., Chapman, M. G. and Underwood, A. J., 1999, The assessment of restoration of habitat in urban wetlands, Landscape and Urban Planning, 43(4), 70-83
  21. James, P. M. S., Albert, J. K., Anna, C. and Bruce, W. N., 2005, Distributary channels and their impact on sediment dispersal, Marine Geology, 222, 75-94 https://doi.org/10.1016/j.margeo.2005.06.030
  22. Karr, J. R., Heifinger, R. C. and Helmer, E, H., 1985, Sensitivity of the index of biotic integritytio changes in chlorine and ammonia levels from wastewater treatment facilities, Journal of the Water Pollution Control Federation, 57, 912-915
  23. Luqian Li, XiXi Lu. and Zhongyuan Chen, 2007, River channel change during the last 50 years in the middle Yangtze River, the Jianli reach, Geomorphology, 85, 185-196 https://doi.org/10.1016/j.geomorph.2006.03.035
  24. Marouane, T., Rovert, L., Francois, B. and Naira, C., 2005, Flood monitoring over the Mackenzic river basin using passive microwave data, Remote Sensing of Environment, 98(15), 344-355 https://doi.org/10.1016/j.rse.2005.06.010
  25. Sandra, J. W., 2000, Medium and short-term channel platform changes on the Rivers Tay and Tummel, Scotland, Geomorphology, 34, 195-208 https://doi.org/10.1016/S0169-555X(00)00007-6
  26. Toshihiro Sakamoto, Nhan Van Nguyen, Akihiko Kotera, Hiroyuki Ohno, Naoki Ishhitsuka, and Masayuki Yokozawa, 2007, Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery, Remote Sensing of Environment, 109, 295-313 https://doi.org/10.1016/j.rse.2007.01.011
  27. Zhao-Yin Wang, Baosheng Wu. and Guangqian Wang, 2007, Fluvial processes and morphological response in the Yellow and Weihe Rivers to closure and operation of Sanmenxia Dam, Geomorphology, 91, 65-79 https://doi.org/10.1016/j.geomorph.2007.01.022