The Anticancer Effects and Drug Metabolic Enzyme Change by Intraperitoneal Injection of Agrimonia Pilosa Ledeb

선학초 (짚신나물) 복강주사의 항암효과 탐색 및 약물 대사효소의 변화

  • Choi, Jung-Won (Department of Orinetal Internal Medicine, College of Oriental Medicine, Kyungwon University) ;
  • Jang, Bo-Hyung (Department of preventivie Medicine, College of Oriental Medicine, Kyunghee University) ;
  • Lee, Ju-Ah (Department of Orinetal Internal Medicine, College of Oriental Medicine, Semyung University) ;
  • Ko, Ho-Yeon (Department of Orinetal Internal Medicine, College of Oriental Medicine, Semyung University) ;
  • Jung, Hee (Department of preventivie Medicine, College of Oriental Medicine, Kyunghee University) ;
  • Jun, Chan-Yong (Department of Orinetal Internal Medicine, College of Oriental Medicine, Kyungwon University) ;
  • Park, Jong-Hyung (Department of Orinetal Internal Medicine, College of Oriental Medicine, Kyungwon University) ;
  • Kim, Ji-Hye (Department of preventivie Medicine, College of Oriental Medicine, Kyunghee University) ;
  • Ko, Seong-Gyu (Department of preventivie Medicine, College of Oriental Medicine, Kyunghee University) ;
  • Choi, You-Kyung (Department of Orinetal Internal Medicine, College of Oriental Medicine, Kyungwon University)
  • 최정원 (경원대학교 한의과대학 내과학교실) ;
  • 장보형 (경희대학교 한의과대학 예방의학교실) ;
  • 이주아 (세명대학교 한의과대학 내과학교실) ;
  • 고호연 (세명대학교 한의과대학 내과학교실) ;
  • 정희 (경희대학교 한의과대학 예방의학교실) ;
  • 전찬용 (경원대학교 한의과대학 내과학교실) ;
  • 박종형 (경원대학교 한의과대학 내과학교실) ;
  • 김지혜 (경희대학교 한의과대학 예방의학교실) ;
  • 고성규 (경희대학교 한의과대학 예방의학교실) ;
  • 최유경 (경원대학교 한의과대학 내과학교실)
  • Published : 2009.07.31

Abstract

Objective: This study was to investigate the anti-tumor effect, safety, safety, mechanism and metabolizing enzyme of Agrimonia pilosa LEDEB (APL) in female C57B/L mouse tumor (in vivo). Method: First, to evaluate the antitumor activity of APL, we divided the mice into four groups: normal, control, APL50 (50mg/kg), and APL100 (100mg/kg). LLC-obtained American Type Culture Collection was used. LLC had been inoculated to induce tumors. To measure the anti-tumor effect of APL, we calibrated tumor size and weight. To analyze the mechanism of anti-tumor in APL, we used western blotting and to observe metabolizing enzyme in APL we used to real-time PCR. Result: APL50 and APL100 significantly inhibited tumor growth from 12 days after medicine injected. APL did not induce caspase-dependent apoptosis in LLC-bearing mouse tumor. In APL100, it decreased 41% and 71% in CYP2D22 and CYP3A11, respectively. Conclusion: These results suggest that APL has some anti-tumor effects in female C57B/L mouse tumor. APL should be used carefully with other drugs related with CYP2D22 and CYP3A11.

Keywords

References

  1. Sung HS. Anti-cancer Effects of Kamiboa-tang and some other Traditional Medical Prescriptions. Korean J. Orient.Int. Med. 2007;28(2):321-32.
  2. Shin MK, Kim BS, Oh JH, Lim HY, Kim DW, Choi BH, Byun JS. The Anti-tumor Effects of Soonkiwhajungtang with Doxorubicin in Colon-26. Korean J. Orient.Int. Med. 2004;25(2):183-94.
  3. Park JS, Oh YJ, Jang HJ, Choi YH, Park EA. An Analysis of Nursing Research on Cancer Prevention and Early Detection, Reported in Korea from 1980-2001. The J. of Korean Community Nursing. 2002;13(2):363-75.
  4. Yang JC, Chung WK. Psychology and Quality of Life in Cancer Patients on Radiation Therapy. The J. of Korean Society for Therapeutic Radiology & Oncology. 2004;22(4):271-9.
  5. Chun SB, Yang B, Choi CW, Kim IS, Park KS. Antibacterial Activities against Plant Pathogens and Identification of Agrimol B from Agrimonia pilosa LEDEB. The Korean Journal of Pesticide Science. 2006;10(3):230-6.
  6. Park S, Kwon OJ. Combined Effect of Agrimonia pilosa Ledebour Extract and NaCl for Control of Escherichia coli O157:H7. Korean Journal of Biotechnology and Bioengineering. 1998;13(2):168-73.
  7. Cao LH, Lee JK, Cho KH, Kang DG, Kwon TO, Kwon JW, et al.Mechanism for the Vascular Relaxation Induced by Butanol Extract of Agrimonia pilosa. Korean Journal of Pharmacognosy. 2006;37(2):67-73.
  8. Lee YH, Kim MB, Chung DS. Effect of Extract Agrimonsa Pilosa L. on blological Activity in Rats. Korean J. Medicinal Crop Sci. 2002;10(3):167-70.
  9. Kim HJ, Lim HW, Kim BH, Kim HS, Choi SW, Yoon CS. Studies on the Anti-acne Effect of Agrimonia pilosa Ledeb. Journal of the Society of Cosmetic Scientists of Korea. 2006;32(1):53-8.
  10. Kang SC et al. Hepatoprotective Effects of Aqueous Extract from Aerial Part of Agrimmony. Kor. J. Parmacogn. 2006;37(1):28-32.
  11. Murayama T, Kishi N, Koshiura R, Takagi K, Furukawa T, Miyamoto K. Agrimoniin, an antitumor tannin of Agrimonia pilosa Ledeb., induces interleukin-1. Anticancer Res. 1992 Sep-Oct;12(5):1471-4.
  12. Gao K, Zhou L, Chen J, Li F, Zhang L. Experimental study on decoctum Agrimonia pilosa Ledeb-Ledebinduced apoptosis in HL-60 cells in vitro. Zhong Yao Cai. 2000 Sep;23(9):561-2.
  13. Miyamoto K, Kishi N, Koshiura R. Antitumor activity of methanol extract from roots of Agrimonia pilosa Ledeb. Jpn J Pharmacol. 1985 May;38(1):9-16. https://doi.org/10.1254/jjp.38.9
  14. Jun SM, Ko SG, Ko HY, Choi YK, Kim DW, Park JH, Jun CY. Effects of Astragali Radix on Neutropenia Caused by Cyclophosphamide . Korean J. Orient.Int. Med. 2007;28(1):1-11.
  15. Ishikawa M, Okada Y, Satake-Ishikawa R, Kakitani M, Kawagishi M, Matsuki S, et al. Pharmacological effects of recombinant human granulocyte colony-stimulating factor modified by polyethylene glycol on anticancer drug-induced neutropenia in mice. Gen Pharmacol. 1994 May;25(3):533-7. https://doi.org/10.1016/0306-3623(94)90211-9
  16. Sakurai M, Ito M, Hanawa Y, Tsukimoto I, Imashuku S, Ueda K, et al. Clinical study of recombinant human granulocyte-colony stimulating factor (KW-2228) in pediatric field. 2. Effectiveness on neutropenia associated with administration of anticancer agent and safety. Rinsho Ketsueki. 1993;34(2):119-27.
  17. Kloft C, Wallin J, Henningsson A, Chatelut E, Karlsson MO. Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification: comparison across anticancer drugs. Clin Cancer Res. 2006;12(18):5481-90. https://doi.org/10.1158/1078-0432.CCR-06-0815
  18. Steller H. Mechanism and genes of cells suicide. Science. 1995;267:1145-9.
  19. Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000;102;1-4. https://doi.org/10.1016/S0092-8674(00)00003-9
  20. Meier P, Finch A. and Evan, G. Apoptosis in development. Nature. 2000;407:796-801 https://doi.org/10.1038/35037734
  21. Nunez G., Benedict MA, Hu Y, Inohara N. Caspases: The proteases of the apoptotic pathway. Oncogene. 1998;17:3237-45. https://doi.org/10.1038/sj.onc.1202581
  22. Kothakota S, Azuma T, Reinhard C, et al. Caspase-3-generated fragment of gelsolin: Effector of morphological change in apoptosis. Science. 1997;278:294-8. https://doi.org/10.1126/science.278.5336.294
  23. Jonstone RW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108:153-64. https://doi.org/10.1016/S0092-8674(02)00625-6
  24. Martinou JC, Green DR. Breaking the mitochondrial barrior. Nat Rev Mol Cell Biol. 2001;1:63-7.
  25. Lim SS, Lee YS, Cho HJ, Shin HK, Yoon JH. Synthesis of Methoxylated Flavone Derivatives and Examination of Their Effects on HT-29 Human Colon Cancer Cell Growth. Cancer Prevention Research. Cancer Prevention Research. 2006;11:211-7.
  26. Russel FG, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008;29(4):200-7. https://doi.org/10.1016/j.tips.2008.01.006
  27. Deeley RG, Cole SP. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett. 2006;580(4):1103-11. https://doi.org/10.1016/j.febslet.2005.12.036
  28. Van der Kolk DM, Vellenga E, Müller M, de Vries EG. Multidrug resistance protein MRP1, glutathione, and related enzymes. Their importance in acute myeloid leukemia. Adv Exp Med Biol. 1999;457:187-98. Review.
  29. Keppler D, Leier I, Jedlitschky G, König J. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2. Chem Biol Interact. 1998;111-112:153-61. https://doi.org/10.1016/S0009-2797(97)00158-0
  30. Huttunen KM, Mähönen N, Raunio H, Rautio J. Cytochrome P450-activated prodrugs: targeted drug delivery. Curr Med Chem. 2008;15(23):2346-65. https://doi.org/10.2174/092986708785909120
  31. Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human cytochrome P450-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875-94. https://doi.org/10.1517/17425255.2.6.875
  32. Yu AM, Haining RL. Expression, purification, and characterization of mouse CYP2d22. Drug Metab Dispos. 2006;34(7):1167-74. https://doi.org/10.1124/dmd.105.008870
  33. Blume N, Leonard J, Xu ZJ, Watanabe O, Remotti H, Fishman J. Characterization of Cyp2d22, a novel cytochrome P450 expressed in mouse mammary cells. Arch Biochem Biophys. 2000;381(2):191-204. https://doi.org/10.1006/abbi.2000.1978
  34. Down MJ, Arkle S, Mills JJ. Regulation and induction of CYP3A11, CYP3A13 and CYP3A25 in C57BL/6J mouse liver. Arch Biochem Biophys. 2007;457(1):105-10. https://doi.org/10.1016/j.abb.2006.09.017