DOI QR코드

DOI QR Code

균사체를 이용한 수삼 고체발효물의 화학적 조성 및 면역 활성

Chemical Composition and Immunostimulating Activity of the Fermented Korean Ginseng (Panax ginseng C.A. Meyer) with Mushroom Mycelium by Solid Culture

  • 박창규 (충주대학교 식품생명공학부) ;
  • 김훈 (충주대학교 식품생명공학부) ;
  • 도기 (충주대학교 식품생명공학부) ;
  • 유광원 (충주대학교 식품생명공학부) ;
  • 정헌상 (충북대학교 식품공학과) ;
  • 이현용 (강원대학교 생물소재공학) ;
  • 정재현 (충주대학교 식품생명공학부)
  • Park, Chang-Kyu (Division of Food and Biotechnology, Chungju National University) ;
  • Kim, Hoon (Division of Food and Biotechnology, Chungju National University) ;
  • Tu, Qi (Division of Food and Biotechnology, Chungju National University) ;
  • Yu, Kwang-Won (Division of Food and Biotechnology, Chungju National University) ;
  • Jeong, Heon-Sang (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Lee, Hyeon-Yong (Dept. of Biomaterials Engineering, Kangwon National University) ;
  • Jeong, Jae-Hyun (Division of Food and Biotechnology, Chungju National University)
  • 발행 : 2009.09.30

초록

기능성음료 등에 수삼을 적극적으로 활용하기 위하여 영지버섯(Ganoderma lucidum), 노루궁뎅이버섯(Hericium erinaceum) 및 상황버섯(Phellinus linteus)의 균사체를 이용한 균사체의 수삼 고체발효물을 조제하였다. 일반성분 분석결과, 고체발효물(4.66$\sim$12.02%)은 수삼(1.6%)보다 많은 조지방을 함유하고 있었고 조단백질의 경우에는 이와 반대로 고체발효물에서 수삼보다 함량이 적었다. 본 연구에서는 이와 같이 조제한 수삼의 균사체 고체발효물에 대하여 마이토젠 활성을 검토한 결과, WG-PL 열수추출물의 마이토젠 활성은 수삼 또는 3종류의 균사체만의 발효물(GL, HE, PL)로부터 조제된 열수추출물보다 IL-2 생산능(saline control의 1.64배)과 비장세포 증식활성(1.47배)에서 유의적으로 더 높은 활성을 보였다. 또한 수삼 고체발효물과의 반응에서 마크로파지 lysosomal phosphatase 활성(WG-HE; 1.32배)과 NO 및 TNF-$\alpha$ 생산능(WG-HE: 50 ${\mu}g$/mL의 시료 농도에서 2.27배, WG-PL: 3.56배)이 WG 또는 균사체보다 유의적으로 우수한 활성을 나타내었다. 이러한 결과로부터 수삼의 유용균사체 고체발효물의 열수추출물은 고체발효에 의해 수삼과는 다른 화학적 조성을 포함하고 있음을 알 수 있었으며 이러한 조성이 면역 활성에 유용하게 기여하는 것으로 확인되었다.

For the utilization of Korean ginseng (Panax ginseng C.A. Meyer) in the functional drink, we prepared the fermented Korean ginseng with mushroom mycelia (Ganoderma lucidum; WG-GL, Hericium erinaceum; WG-HE and Phellinus linteus; WG-PL) by solid culture. A proximate analysis showed that the fermented Korean ginseng contained significantly more crude fat (4.66$\sim$12.02%) than Korean ginseng (WG, 1.61%) whereas crude protein content of WG (13.64%) was higher value than those of the ferments (7.60$\sim$12.57%). When we also evaluated effects of the fermented Korean ginseng on the mitogenic activity, hot-water extract from WG-PL was significantly higher than those of WG or mycelia only fermentation (GL, HE and PL) as analyzed by IL-2 production (1.64-fold of the saline control) and proliferation of splenocytes (1.47-fold). In addition, the lysosomal phosphatase activity (WG-HE; 1.32-fold) and NO/TNF-$\alpha$ production (WG-HE; 2.27-fold of the saline control at 50 ${\mu}g$/mL, WG-PL; 3.56-fold, respectively) from macrophage in the presence of the fermented Korean ginseng were higher than those of WG or mycelia fermentation. These results indicate that hot-water extracts from the fermented Korean ginseng with mushroom mycelia by solid culture contain chemical ingredients different from the Korean ginseng, and that it might provide beneficial immunostimulating activity.

키워드

참고문헌

  1. Huang KC. 1998. A brief history of Chinese medicine. In The Pharmacology of Chinese Herbs. CRC Press, Florida, USA. p 11-23
  2. Park CK, Kwak YS, Hwang MS, Kim SC, Do JH. 2007. Trends and prospect of ginseng products in market health functional food. Food Science and Industry 40: 30-45
  3. Park CK, Jeon BS, Yang JW. 2003. The chemical components of Korean ginseng. Food Industry and Nutrition 8: 10-23
  4. Ko SR, Choi KJ, Kim HK, Han KW. 1996. Comparison of proximate composition, mineral nutrients, amino acid and free sugar contents of several Panax species. Korean J Ginseng Sci 20: 36-41
  5. Choi HJ, Han HS, Park JH, Son JH, Bae JH, Seung TS, Choi C. 2003. Antioxidative, phospholipase A2 inhibiting, and anticancer effect of polyphenol rich fractions from Panax ginseng C.A. Meyer. J Korean Soc Agric Chem Biotechnol 46: 251-256
  6. Kaku T, Miyata T, Uruno T, Sako I, Kinoshita A. 1975. Chemico-pharmacological studies on saponins of Panax ginseng C.A. Meyer. II. Pharmacological part. Arzneimittelforschung 25: 539-547
  7. Kwon SH, Kim CN, Kim CY, Kwon ST, Park KM, Hwangbo S. 2003. Antitumor activities of protein-bound polysaccharide extracted from mycelia of mushroom. Korean J Food & Nutr 16: 15-21
  8. Chang ZQ, Oh BC, Lee SP, Rhee MH, Park SC. 2008. Comparative immunomodulating activities of polysaccharides isolated from Phellinus spp. on cell-mediated immunity. Phytother Res 22: 1396-1399 https://doi.org/10.1002/ptr.2516
  9. Yim MH, Shin JW, Son JY, Oh SM, Han SH, Cho JH, Cho CK, Yoo HS, Lee YW, Son CG. 2007. Soluble components of Hericium erinaceum induce NK cell activation via production of interleukin-12 in mice splenocytes. Acta Pharmacol Sin 28: 901-907 https://doi.org/10.1111/j.1745-7254.2007.00577.x
  10. Yu KW, Shin KS, Choi YM, Suh HJ. 2004. Macrophage stimulating activity of exo-biopolymer from submerged culture of Lentinus edodes with rice bran. J Microbiol Biotechnol 14: 658-664
  11. Percario S, Odorizzi VF, Souza DRS, Pinhel MAS, Gennari JL, Gennari MS, Godoy MF. 2008. Edible mushroom Agaricus sylvaticus can prevent the onset of atheroma plaques in hypercholesterolemic rabbits. Cell Mol Biol 54: OL1055-1061
  12. Lee JS, Park BC, Ko YJ, Choi MK, Choi HG, Yong CS, Lee JS, Kim JA. 2008. Grifola frondosa (maitake mushroom) water extract inhibits vascular endothelial growth factor- induced angiogenesis through inhibition of reactive oxygen species and extracellular signal-regulated kinase phosphorylation. J Med Food 11: 643-651 https://doi.org/10.1089/jmf.2007.0629
  13. Yoon TJ, Yu KW, Shin KS, Suh HJ. 2008. Innate immunity stimulation of exo-polymers prepared from Cordyceps sinensis by submerged culture. Appl Microbiol Biotechnol 80: 1087-1093 https://doi.org/10.1007/s00253-008-1607-y
  14. Sullivan R, Smith JE, Rowan NJ. 2006. Medicinal mushrooms and cancer therapy: translating a traditional practice into Western medicine. Perspect Biol Med 49: 159-170 https://doi.org/10.1353/pbm.2006.0034
  15. Zhu T, Kim SH, Chen CY. 2008. A medicinal mushrooms: Phellinus linteus. Curr Med Chem 15: 1330-1335 https://doi.org/10.2174/092986708784534929
  16. Mahajna J, Dotan N, Zaidman BZ, Petrova RD, Wasser SP. 2009. Pharmacological values of medicinal mushrooms for prostate cancer therapy: the case of Ganoderma lucidum. Nutr Cancer 61: 16-26 https://doi.org/10.1080/01635580802379323
  17. AOAC. 2006. Official Methods of Analysis. 18th ed. Association of Official Analytical Chemistry, Washington DC, USA. 925.10, 922.06, 991.20
  18. Sugawara I, Ishizaka S, Tsuji T, Nishiyama T. 1984. MTT assay: rapid colorimetric assay applicable to cellular proliferation and cytotoxicity assay. Igakuno Ayumi 128: 733-735
  19. Andoh, A, Fujiyama Y, Kitoh K, Niwakawa M, Hodohara K, Bamba T, Hosoda S. 1993. Macrophage-colony stimulating factor (M-CSF) enhances complement component C3 production by human monocytes/macrophages. Int J Hematol 57: 53-59
  20. Conrad RE. 1981. Induction and collection of peritoneal exudates macrophages. In Manual of Macrophage Methodology. Herscowitz BH, Holden HT, Bellanti JA, Ghaffar A, eds. Marcel Dekker Incorporation, New York, USA. p 5-11
  21. Suzuki I, Tanaka H, Kinoshita A, Oikawa S, Osawa M, Yadomae T. 1990. Effect of orally administered β-glucan on macrophage function in mice. Int J Immunopharmacol 12: 675-684 https://doi.org/10.1016/0192-0561(90)90105-V
  22. Prakash H, Ali A, Bala M, Goel HC. 2005. Anti-inflammatory effects of Podophyllum hexandrum (RP-1) against lipopolysaccharides induced inflammation in mice. J Pharm Pharm Sci 8: 107-114
  23. Zheng S, Li C, Ng TB, Wang HX. 2007. A lectin with mitogenic activity from the edible wild mushroom Boletus edulis. Process Biochem 42: 1620-1624 https://doi.org/10.1016/j.procbio.2007.09.004
  24. Nathan CF, Hibbs JB Jr. 1991. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3: 65-70 https://doi.org/10.1016/0952-7915(91)90079-G
  25. Okamura M, Lillehoj HS, Raybourne RB, Babu US, Heckert RA, Tani H. Sasai K, Baba E, Lillehoj EP. 2005. Differential responses of macrophages to Salmonella enteica serovars Enteritidis and Typhimurium. Vet Immunol Immunopathol 107: 327-335 https://doi.org/10.1016/j.vetimm.2005.05.009
  26. Suzuki M, Takatsuki F, Maeda YY, Hamuro J, Chihara G. 1994. Antitumor and immunological activity of lentinan in comparison with LPS. Int J Immunopharmacol 16: 463-468 https://doi.org/10.1016/0192-0561(94)90037-X
  27. Ioannidou E. 2006. Therapeutic modulation of growth factors and cytokines in regenerative medicine. Curr Pharm Des 12: 2397-2408 https://doi.org/10.2174/138161206777699007
  28. Wood PR, Seow HF. 1996. T cell cytokines and disease prevention. Vet Immunol Immunopathol 54: 33-44 https://doi.org/10.1016/S0165-2427(96)05711-X
  29. von Rohr A, Thatcher N. 1992. Clinical applications of interleukin- 2. Prog Growth Factor Res 4: 229-246 https://doi.org/10.1016/0955-2235(92)90021-9
  30. Duerksen-Hughes PJ, Day DB, Laster SM, Zachariades NA, Aquino L, Gooding LR. 1992. Both tumor necrosis factor and nitric oxide participate in lysis of simian virus 40-transformed cells by activated macrophages. J Immunol 149: 2114-2122

피인용 문헌

  1. Safety Evaluation of Black Garlic Extract for Development of Cosmeceutical Ingredients -Skin irritation and Sensitization Studies- vol.39, pp.8, 2010, https://doi.org/10.3746/jkfn.2010.39.8.1213
  2. Development of Mouthwash Products with Solid Fermented Oriental Medicinal Herb vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1380
  3. Immunological Activity of Ginseng Is Enhanced by Solid-State Culture withGanoderma lucidumMycelium vol.17, pp.1, 2014, https://doi.org/10.1089/jmf.2013.3063
  4. Immunostimulation activity of a polysaccharide from fermented ginseng with Hericium erinaceum mycelia in solid-state culture vol.25, pp.1, 2016, https://doi.org/10.1007/s10068-016-0044-4
  5. Changes of Antioxidant Activities on Cultured Ginseng with Mushroom Mycelia During Cultivation vol.39, pp.9, 2010, https://doi.org/10.3746/jkfn.2010.39.9.1346
  6. Radio-protective effect of polysaccharides isolated from Lactobacillus brevis-fermented Ecklonia cava vol.52, 2013, https://doi.org/10.1016/j.ijbiomac.2012.10.004
  7. Changes of Ginsenoside Content by Mushroom Mycelial Fermentation in Red Ginseng Extract vol.35, pp.2, 2011, https://doi.org/10.5142/jgr.2011.35.2.235
  8. Anti-Inflammatory Activities of Extracts from Fermented Taraxacum platycarpum D. Leaves Using Hericium erinaceum Mycelia vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.020
  9. 노루궁뎅이버섯 균사체를 이용한 2 차 발효달팽이 추출물의 항노화 활성에 관한 연구 vol.33, pp.1, 2009, https://doi.org/10.12925/jkocs.2016.33.1.143
  10. 버섯균사체 발효 뽕잎 추출물의 항산화 활성 vol.34, pp.4, 2009, https://doi.org/10.12925/jkocs.2017.34.4.1025
  11. 항산화 효소의 산화적 변형에 뽕잎 발효물이 미치는 영향 vol.36, pp.3, 2019, https://doi.org/10.12925/jkocs.2019.36.3.985