DOI QR코드

DOI QR Code

The Development of Double Clad Fiber and Double Clad Fiber Coupler for Fiber Based Biomedical Imaging Systems

  • Ryu, Seon-Young (Department of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Choi, Hae-Young (Department of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Ju, Myeong-Jin (Department of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Na, Ji-Hoon (Department of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Choi, Woo-June (Department of Information and Communications, Gwangju Institute of Science and Technology) ;
  • Lee, Byeong-Ha (Department of Information and Communications, Gwangju Institute of Science and Technology)
  • Received : 2009.06.10
  • Accepted : 2009.08.17
  • Published : 2009.09.25

Abstract

We report the fabrication of double clad fiber (DCF) and DCF coupler, suitable for fiber based imaging systems requiring the dual-channel transmission. Unlike the conventional DCF which uses silica for both cladding layers, the proposed DCF uses a low-index polymer for its outer-cladding layer coated over the conventional silica inner-cladding layer. The DCF is drawn with a conventional SMF preform but a low-index polymer coating is used for both jacket and outercladding of the fiber. To achieve the cladding mode coupling, a DCF coupler is fabricated by simply twisting two pieces of the proposed DCF after removing the polymer-coating at contacting regions. A cladding mode coupling ratio of 30% was achieved with a contact length of 16 cm. The proposed DCF and DCF coupler were employed in a composite optical coherence tomography (OCT) and fluorescence spectroscopy (FS) system, and both OCT images and FS signal from a plant tissue are measured simultaneously.

Keywords

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, 'Optical coherence tomography,' Science 254, 1178-1181 (1991) https://doi.org/10.1126/science.1957169
  2. H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, 'Submillimeter optical reflectometry,' J. Lightwave Technol. 7, 1225-1233 (1989) https://doi.org/10.1109/50.32387
  3. J. I. Youn, 'Evaluation of morphological changes in degenerative cartilage using 3-D optical coherence tomography,' J. Opt. Soc. Korea 12, 98-102 (2008) https://doi.org/10.3807/JOSK.2008.12.2.98
  4. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, 'Methods and application areas of endoscopic optical coherence tomography,' J. Biomed. Opt. 11, 063001 (2006) https://doi.org/10.1117/1.2400214
  5. N. Ramanujam, 'Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,' Neoplasia 2, 89-117 (2000) https://doi.org/10.1038/sj.neo.7900077
  6. U. Utzinger and R. R. Richards-Kortum, 'Fiber optic probes for biomedical optical spectroscopy,' J. Biomed. Opt. 8, 121-147 (2003) https://doi.org/10.1117/1.1528207
  7. C. A. Patil, N. Bosschaart, M. D. Keller, T. G. van Leeuwen, and A. Mahadevan-Jansen, 'Combined Raman spectroscopy and optical coherence tomography device for tissue characterization,' Opt. Lett. 33, 1135-1137 (2008) https://doi.org/10.1364/OL.33.001135
  8. A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, 'Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,' Appl. Opt. 43, 113-121 (2004) https://doi.org/10.1364/AO.43.000113
  9. L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K. T. Kim, 'Optical probe based on double-clad optical fiber for fluorescence spectroscopy,' Opt. Exp. 15, 17681-17689 (2007) https://doi.org/10.1364/OE.15.017681
  10. S. Y. Ryu, H. Y. Choi, J. H. Na, E. S. Choi, and B. H. Lee, 'Combined system of optical coherence tomography and fluorescence spectroscopy based on doublecladding fiber,' Opt. Lett. 33, 2347-2349 (2008) https://doi.org/10.1364/OL.33.002347
  11. H. Kim, J. Kim, U. C. Baek, and B. H. Lee, 'Tunable photonic crystal fiber coupler based on a side-polishing technique,' Opt. Lett. 29, 1194-1196 (2004) https://doi.org/10.1364/OL.29.001194
  12. B. H. Lee, J. B. Eom, D. S. Moon, and U. C. Baek, 'Photonic crystal fiber coupler,' Opt. Lett. 27, 812-814 (2002) https://doi.org/10.1364/OL.27.000812
  13. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, 'Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,' Appl. Opt. 47, 1510-1516 (2008) https://doi.org/10.1364/AO.47.001510
  14. C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, 'Imaging of the blue, green, and red fluorescence emission of plants: an overview,' Photosynthetica 38, 483-491 (2000) https://doi.org/10.1023/A:1012440903014

Cited by

  1. Multimodal analysis of pearls and pearl treatments by using optical coherence tomography and fluorescence spectroscopy vol.19, pp.7, 2011, https://doi.org/10.1364/OE.19.006420
  2. Microlensed dual-fiber probe for depth-resolved fluorescence measurements vol.19, pp.15, 2011, https://doi.org/10.1364/OE.19.014172
  3. A fiber-based single-unit dual-mode optical Imaging system: Swept source optical coherence tomography and fluorescence spectroscopy vol.285, pp.9, 2012, https://doi.org/10.1016/j.optcom.2011.12.098
  4. Double-clad fiber coupler for partially coherent detection vol.23, pp.7, 2015, https://doi.org/10.1364/OE.23.009040
  5. A dual-modal optical system combining depth-sensitive laser induced fluorescence (LIF) spectroscopy and optical coherence tomography (OCT) for analyzing layered biological tissue vol.5, pp.3, 2016, https://doi.org/10.3233/BSI-160147
  6. Raman probes based on optically-poled double-clad fiber and coupler vol.20, pp.27, 2012, https://doi.org/10.1364/OE.20.028563
  7. Nonlinear endomicroscopy using a double-clad fiber coupler vol.35, pp.7, 2010, https://doi.org/10.1364/OL.35.000995
  8. Specialty Fiber Coupler: Fabrications and Applications vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.326
  9. Design of zero dispersive double clad fiber for high efficiency operation of two color light vol.108, pp.2, 2012, https://doi.org/10.1007/s00340-012-5004-y
  10. Lensed Dual-Fiber Probe for the Effective Collection of Fluorescence Signals vol.23, pp.6, 2011, https://doi.org/10.1109/LPT.2011.2106203
  11. Double-clad fiber with a tapered end for confocal endomicroscopy vol.2, pp.11, 2011, https://doi.org/10.1364/BOE.2.002961
  12. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler vol.6, pp.4, 2015, https://doi.org/10.1364/BOE.6.001293
  13. Empirical Analysis of Widely Tunable Fused Fiber Coupler Assisted by External Medium of High Thermo-Optic Coefficient vol.30, pp.1, 2011, https://doi.org/10.1080/01468030.2010.539661
  14. Review of diverse optical fibers used in biomedical research and clinical practice vol.19, pp.8, 2014, https://doi.org/10.1117/1.JBO.19.8.080902
  15. Light-guided localization within tissue using biocompatible surgical suture fiber as an optical waveguide vol.19, pp.9, 2014, https://doi.org/10.1117/1.JBO.19.9.090503
  16. High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model vol.9, pp.12, 2018, https://doi.org/10.1364/BOE.9.006186