DOI QR코드

DOI QR Code

Optical Skin-fat Thickness Measurement Using Miniaturized Chip LEDs: A Preliminary Human Study

  • Ho, Dong-Su (Department of Biomedical Engineering, Yonsei University) ;
  • Kim, Ee-Hwa (The Clinical Trial Center for Bio-Industry, Semyung University) ;
  • Hwang, In-Duk (Bio & Health Laboratory, Samsung Advanced Institute of Technology) ;
  • Shin, Kun-Soo (Bio & Health Laboratory, Samsung Advanced Institute of Technology) ;
  • Oh, Jung-Taek (Samsung Electronics Co., Ltd.) ;
  • Kim, Beop-Min (Department of Biomedical Engineering, Korea University)
  • Received : 2009.04.20
  • Accepted : 2009.05.08
  • Published : 2009.09.25

Abstract

We tested the feasibility of measuring fat thickness using a miniaturized chip LED sensor module, testing 12 healthy female subjects. The module consisted of a single detector and four sources at four different source-detector distances (SD). A segmental curve-fitting procedure was applied, using an empirical algorithm obtained by Monte-Carlo simulation, and fat thicknesses were estimated. These thicknesses were compared to computed-tomography (CT) results; the correlation coefficient between CT and optical measurements was 0.932 for bicep sites. The mean percentage error between the two measurements was 13.12%. We conclude that fat thickness can be efficiently measured using the simple sensor module.

Keywords

References

  1. S. J. Wallner, N. Luschnigg, W. J. Schnedl, T. Lahousen, K. Crailsheim, R. Moller, E. Tafeit, and R. Horejsi, 'Body fat distribution of overweight females with a history of weight cycling,' International Journal of Obesity 28, 1143–1148 (2004) https://doi.org/10.1038/sj.ijo.0802736
  2. Y. Yang, O. O. Soyemi, M. R. Landry, and B. R. Soller, 'Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on twolayered Monte Carlo simulations and phantom experiments,' Opt. Exp. 13, 1570-1579 (2005) https://doi.org/10.1364/OPEX.13.001570
  3. A. Kienle, L. Lilge, M. S. Patterson, B. C. Wilson, R. Hibst, and R. Steiner, 'Investigation of multi-layered tissue with in-vivo reflectance measurement,' Proc. SPIE 2326, 212-221 (1995) https://doi.org/10.1117/12.200824
  4. C. R. Calkins, J. C. Forrest, and J. W. Lamkey, 'Using total body electrical conductivity(TOBEC) and optical fat probes for estimating carcass composition,' Reciprocal Meat Conference Proceedings 46, 49-51 (1993)
  5. R. Moller, E. Tafeit, K. H. Smolle, T. R. Pieber, O. Ipsiroglu, M. Duesse, C. Huemer, K. Sudi, and G. Reibnegger, 'Estimating percentage total body fat and determining subcutaneous adipose tissue distribution with a new noninvasive optical device lipometer,' American Journal of Human Biology 12, 221–230 (2000) https://doi.org/10.1002/(SICI)1520-6300(200003/04)12:2<221::AID-AJHB8>3.0.CO;2-2
  6. A. Sagisaka, H. Daido, A. S. Pirozhk, A. Yogo, K. Ogura, S. Orimo, J. Ma, M. Mori, M. Nishiuchi, S. V. Bulanov, T. Zh. Esirkepov, Y. Oishi, T. Nayuki, T. Fujii, K. Nemoto, and H. Nagatomo, 'Development of laser-driven proton source toward its applications,' J. Opt. Soc. Korea 13, 37-41 (2009) https://doi.org/10.3807/JOSK.2009.13.1.037
  7. D.-S. Ho, B.-M. Kim, I. D. Hwang, and K. Shin, 'Evaluation of a chip LED sensor module at 770 nm for fat thickness measurement of optical tissue phantoms and human body tissue,' J. Korean Phys. Soc. 51, 1663 –1667 (2007)
  8. J. H. Lee, T. S. Jang, H.-S. Yang, and S.-W. Rhee, 'Optical design of a compact imaging spectrometer for STSAT3,' J. Opt. Soc. Korea 12, 262-268 (2008) https://doi.org/10.3807/JOSK.2008.12.4.262
  9. B.-M. Kim, 'Optical property measurements of turbid media using continuous-wave light sources,' J. Korean Phys. Soc. 44, 427–434 (2004)
  10. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press LLC, USA, 2003)
  11. L. Wang, S. L. Jacques, and L. Zheng, 'MCML-Monte Carlo modeling of light transport in multi-layered tissues,' Computer Methods and Programs in Biomedicine 47, 131-146 (1995) https://doi.org/10.1016/0169-2607(95)01640-F
  12. L. Wang, S. L. Jacques, and L. Zheng, 'CONV-convolution for responses to a finite diameter photon beam incident on multi-layered tissues,' Computer Methods and Programs in Biomedicine 54, 141-150 (1997) https://doi.org/10.1016/S0169-2607(97)00021-7

Cited by

  1. A Study of the Optical Properties of Cosmetics Measured by Polarized Light Goniophotometry vol.16, pp.1, 2012, https://doi.org/10.3807/JOSK.2012.16.1.036
  2. Multi-layer Intrabody Terahertz Wave Propagation Model for Nanobiosensing Applications vol.14, 2017, https://doi.org/10.1016/j.nancom.2017.08.005
  3. High-brightness Phosphor-conversion White Light Source Using InGaN Blue Laser Diode vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.415