Antioxidant and QR Inductive Activities of Novel Functional Soybean 'Agakong3'

  • Ku, Kang-Mo (Agrobiotechnology Education Center NURI, Kyungpook National University) ;
  • Kim, Min-Gun (Division of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University) ;
  • Hong, Mi-Jeong (Division of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University) ;
  • Jeong, Yeon-Shin (Division of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University) ;
  • Kim, Jeong-Sang (Division of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University) ;
  • Lee, In-Jung (Division of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University) ;
  • Shin, Dong-Hyun (Division of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University) ;
  • Hwang, Young-Hyun (Division of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University) ;
  • Kang, Young-Hwa (Division of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University)
  • Published : 2009.06.30

Abstract

In order to evaluate the bioactivity of 'Agakong3', which was newly bred, quinone reductase (QR) inductive activity and antioxidant activity were both assessed. The methanol extract of 'Agakong3' showed a significantly stronger QR inductive activity than other soybeans. The methanol extract of 'Agakong3' also showed a significantly stronger cytotoxicity on hepa1c1c7 than other soybeans. 'Agakong3' exhibited the most potent antioxidant activity in the Trolox equivalent antioxidant capacity (TEAC) assay whereas it showed significantly weak antioxidant in the DPPH assay. In total phenol and flavonoid contents, 'Agakong3' showed the highest contents regarding phenol and flavonoid compounds. Major isoflavones such as daidzein and genistein were quantitified by high performance liquid chromatography. 'Agakong3' also showed the highest total isoflavone contents. Results of correlation analysis showed that there were high correlation coefficients between the contents of isoflavone and TEAC and the contents of isoflavone and QR inductive activity, respectively. These results suggest that 'Agakong3' will be a promising and functional food material.

Keywords

References

  1. Messina M, Barnes S. The role of soy products in reducing risk of cancer. J. Natl. Cancer Inst. 83: 541-546 (1991) https://doi.org/10.1093/jnci/83.8.541
  2. Messina M, Messina V. Increasing use of soyfoods and their potential role in cancer prevention. J. Am. Diet. Assoc. 91: 836-840 (1991)
  3. Messina MJ, Persky V, Setchell KD, Barnes S. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 21: 113-131 (1994) https://doi.org/10.1080/01635589409514310
  4. Lee HP, Gourley L, Duffy SW, Esteve J, Lee J, Day NE. Dietary effects on breast-cancer risk in Singapore. Lancet 337: 1197-1200 (1991) https://doi.org/10.1016/0140-6736(91)92867-2
  5. Wu AH, Ziegler RG, Nomura AM, West DW, Kolonel LN, Horn-Ross PL, Hoover RN, Pike MC. Soy intake and risk of breast cancer in Asians and Asian-Americans. Am. J. Clin. Nutr. 68: 1437S-1443S (1998) https://doi.org/10.1093/ajcn/68.6.1437S
  6. Shamsuddin AM, Ullah A. Inositol hexaphosphate inhibits large intestinal cancer in F344 rats 5 months after induction by azoxymethane. Carcinogenesis 10: 625-636 (1989) https://doi.org/10.1093/carcin/10.3.625
  7. Severson RK, Nomura AM, Grove JS, Stemmermann GN. A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res. 49: 1857-1860 (1989)
  8. You WC, Blot WJ, Chang YS, Ershow AG, Yang ZT, An Q, Henderson B, Xu GW, Fraumeni JF Jr, Wang TG. Diet and high risk of stomach cancer in Shandong, China. Cancer Res. 48: 3518-3523 (1988) https://doi.org/10.1016/0168-8510(90)90388-T
  9. Ho SC, Woo J, Lam S, Chen Y, Sham A, Lau J. Soy protein consumption and bone mass in early postmenopausal Chinese women. Osteoporosis Int. 14: 835-842 (2003) https://doi.org/10.1007/s00198-003-1453-9
  10. Teede HJ, Dalais FS, Kotsopoulos D, Liang YL, Davis S, McGrath BP. Dietary soy has both beneficial and potentially adverse cardiovascular effects: A placebo-controlled study in men and postmenopausal women. J. Clin. Endocr. Metab. 86: 3053-3060 (2001) https://doi.org/10.1210/jc.86.7.3053
  11. Hasler CM. The cardiovascular effects of soy products. J. Cardiovasc. Nurs. 16: 50-63 (2002) https://doi.org/10.1097/00005082-200207000-00006
  12. Sarkar FH, Li Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metast. Rev. 21: 265-280 (2002) https://doi.org/10.1023/A:1021210910821
  13. Lamartiniere CA. Protection against breast cancer with genistein: A component of soy. Am. J. Clin. Nutr. 71: 1705S-1707S (2000) https://doi.org/10.1093/ajcn/71.6.1705S
  14. Kurahashi N, Iwasaki M, Sasazuki S, Otani T, Inoue M, Tsugane S, Japan Public Health Center-Based Prospective Study Group. Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidem. Biomar. 16: 538-545 (2007) https://doi.org/10.1158/1055-9965.EPI-06-0517
  15. Suthar AC, Banavalikar MM, Biyani MK. Pharmacological activities of genistein, an isoflavone from soy (Glycine max): Part IAnti-cancer activity. Indian J. Exp. Biol. 39: 511-519 (2001)
  16. Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Invest. 21: 744-757 (2003) https://doi.org/10.1081/CNV-120023773
  17. Dixon RA, Ferreira D. Genistein. Phytochemistry 60: 205-211 (2002) https://doi.org/10.1016/S0031-9422(02)00116-4
  18. Lamartiniere CA, Cotroneo MS, Fritz WA, Wang J, Mentor-Marcel R, Elgavish A. Genistein chemoprevention: timing and mechanisms of action in murine mammary and prostate. J. Nutr. 132: 552S-558S (2002) https://doi.org/10.1093/jn/132.3.552S
  19. Moon YJ, Wang X, Morris ME. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro 20: 187-210 (2006) https://doi.org/10.1016/j.tiv.2005.06.048
  20. Suthar AC, Banavalikar MM, Biyani MK. Pharmacological activities of genistein, an isoflavone from soy (Glycine max): Part II-Anti-cholesterol activity, effects on osteoporosis & menopausal symptoms. Indian J. Exp. Biol. 39: 520-525 (2001)
  21. Messina M, Hughes C. Efficacy of soyfoods and soybean isoflavone supplements for alleviating menopausal symptoms is positively related to initial hot flush frequency. J. Med. Food 6: 1-11 (2003) https://doi.org/10.1089/109662003765184697
  22. Farmakalidis E, Murphy PA. Estrogenic potency of genistin and daidzin in mice. Food Chem. Toxicol. 23: 741-745 (1985) https://doi.org/10.1016/0278-6915(85)90268-6
  23. Lee JD, Hwang YH, Cho HY, Kim DU, Choung MG. Comparison of characteristics related with soybean sprouts between Glycine max and G. soja. Korean J. Crop Sci. 47: 189-195 (2002)
  24. Lee JD, Yoon YH, Chung IK, Park SK, Hwang YH. A new Glycine soja germplasm accession with green seed-coat color. Breeding Sci. 55: 21-25 (2005) https://doi.org/10.1270/jsbbs.55.21
  25. Smith TJ, Camper Jr HM. Effect of seed on soybean performance. Agron. J. 67: 681-684 (1975) https://doi.org/10.2134/agronj1975.00021962006700050025x
  26. Lee SC, Kim JH, Seo HI, Choi KG. Effect of soil conditions on hypocotyl elongation and emergence in soybean. Korean J. Crop Sci. 37: 506-513 (1993)
  27. Lee JD, Hwang YH, Kwon TH, Cho HY, Jeong YS, Lee SS, Moon HS. A new soybean line for sprout 'Agakong' with small seed size and high isoflavone contents derived from Glycine max×G. soja. p. 87. In: Autumn International Symposium and Conference. October 24-25, Suanbo Sangnokresort Hotel, Suanbo, Chungcheongbuk-do, Korea. Korean J. Breeding, Suwon, Gyeonggi, Korea (2002)
  28. Talalay P, De Long MJ, Prochaska HJ. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. P. Natl. Acad. Sci. USA 85: 8261-8265 (1988) https://doi.org/10.1073/pnas.85.21.8261
  29. Prochaska HJ, Santamaria AB. Direct measurement of NAD(P)H:quinone reductase from cells cultured in microtiter wells: A screening assay for anticarcinogenic enzyme inducers. Anal. Biochem. 169: 328-336 (1988) https://doi.org/10.1016/0003-2697(88)90292-8
  30. Dietz BM, Kang YH, Liu G, Eggler AL, Yao P, Chadwick LR, Pauli GF, Farnsworth NR, Mesecar AD, van Breemen RB, Bolton JL. Xanthohumol isolated from Humulus lupulus inhibits menadioneinduced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18: 1296-1305 (2005) https://doi.org/10.1021/tx050058x
  31. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82: 1107-1112 (1990) https://doi.org/10.1093/jnci/82.13.1107
  32. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  33. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': The FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  34. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144-153 (1965)
  35. Abeysinghe DC, Li X, Sun CD, Zhang WS, Zhou CH, Chen KS. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem. 104: 1338-1344 (2007) https://doi.org/10.1016/j.foodchem.2007.01.047
  36. Cesar da C, Braga FC, Soares CD, Nunan Ede A, Pianetti GA, Condessa FA, Barbosa TA, Campos LM. Development and validation of a RP-HPLC method for quantification of isoflavone aglycones in hydrolyzed soy dry extracts. J. Chromatogr. B 836: 74-78 (2006) https://doi.org/10.1016/j.jchromb.2006.03.030
  37. Prochaska HJ, Santamaria AB, Talalay P. Rapid detection of inducers of enzymes that protect against carcinogens. P. Natl. Acad. Sci. USA 89: 2394-2398 (1992) https://doi.org/10.1073/pnas.89.6.2394
  38. Zhang YS, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli-Isolation and elucidation of structure. P. Natl. Acd. Sci. USA 89: 2399-2403 (1992) https://doi.org/10.1073/pnas.89.6.2399
  39. Ji S, Willis GM, Frank GR, Cornelius SG, Spurlock ME. Soybean isoflavones, genistein and genistin, inhibit rat myoblast proliferation, fusion, and myotube protein synthesis. J. Nutr. 129: 1291-1297 (1999) https://doi.org/10.1093/jn/129.7.1291
  40. Mun GS, Kwon WT, Lyu SH. Comparison of antioxidative activities of soybean components by different assays. Korea Soybean Digest 20: 28-36 (2003)
  41. Lee KW, Lee HJ. The roles of polyphenols in cancer chemoprevention. Biofactors 26: 105-121 (2006) https://doi.org/10.1002/biof.5520260202
  42. Uda Y, Price KR, Williamson G, Rhodes MJ. Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids. Cancer Lett. 120: 213-216 (1997) https://doi.org/10.1016/S0304-3835(97)00311-X
  43. Lee MH, Park YH, Oh HS, Kwak TS. Isoflavone contents in soybean and its processed products. Korean J. Food Sci. Technol. 34: 365-369 (2002)
  44. Kim JS, Nam YJ, Kwon TW. Induction of quinone reductase activity by genistein, soybean isoflavone. Foods Biotechnol. 5: 70-75 (1996)