DOI QR코드

DOI QR Code

마이크로 채널 반응기에서 메탄올의 수증기 개질반응을 통한 수소 제조

Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor

  • 이진우 (경기대학교 환경에너지시스템공학과) ;
  • 전혜정 (환경관리공단 대기관리처 대기측정망팀) ;
  • 홍성창 (경기대학교 환경에너지시스템공학과)
  • Lee, Jin-Woo (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Jeon, Hye-Jeong (Ambient Air Quality Monitoring Team, Air Monitoring Department, Environmental Management Corporation) ;
  • Hong, Sung-Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 발행 : 2009.06.30

초록

상용촉매인 Johnson Matthey사 KATALCO 83-3 촉매를 이용하여 마이크로 채널 반응기 (micro-channel reactor: MCR) 형태에 따른 메탄올 수증기 개질반응을 통한 수소제조반응 특성 연구를 수행하였다. 반응온도 200${\sim}$300$^{\circ}C$, 공간속도 3,000${\sim}$10,000 $hr^{-1}$, 촉매 크기 0.05${\sim}$2.2 mm 조건을 갖는 고정층 반응기에서 반응활성 실험을 수행한 결과, 촉매 크기 0.35 mm에서 최적의 반응활성을 나타났다. 이 결과를 토대로 stacked bed, boat bed 등 마이크로 채널 반응기 형태에 따른 반응활성을 연구한 결과, stacked bed type 마이크로 채널 반응기가 더 좋은 반응활성을 가짐을 알 수 있었다.

Commercial catalyst (Cu-Zn/$Al_2O_3$, Johnson Matthey Co., 83-3 Catalyst) was applied to the hydrogen production by steam reforming of methanol in the micro-channel reactor (MCR). The steam reforming of methanol was tested over Cu-Zn catalyst at temperatures in the range of 200 and 300$^{\circ}C$, the catalyst size of 0.05${\sim}$2.2 mm, the space velocity of 3,000${\sim}$10,000 $hr^{-1}$ in a fixed bed continuous flow reactor. The conversion of methanol and the yield $H_2$ preferred high temperatures and low space velocities, and had optimal results with the particle size of 0.35 mm. Based on the results from experiments with fixed bed reactor, two types of MCR, boat bed and stacked bed MCRs, were studied. The stacked bed type MCR showed better methanol conversion compared with the boat type one.

키워드

참고문헌

  1. Song, C, "Fuel Processing for Low-temperature and High-temperature Fuel Cells - Challenges and Opportunities for Sustainable Development in the 21st Century," Catal. Today, 77, 17-49 (2002). https://doi.org/10.1016/S0920-5861(02)00231-6
  2. Kobayashi, H., Takezawa, N., Minochi, C. and Takahashi, K., "Dispersion of Copper Supported on Silica and Methanol Reforming Reaction," Chem. Lett, 9, 1197-1200 (1980). https://doi.org/10.1246/cl.1980.1197
  3. Jiang, C, Trimm, D. L. and Wainwright, M. S., "New Technology for Hydrogen Production by the Catalytic Oxidation and Steam Reforming of Methanol at Low Temperature," Chem. Eng. Technol., 18, 1-6 (1995). https://doi.org/10.1002/ceat.270180102
  4. Jiang, C, Trimm, D. L., Wainwright, M. S. and Cant, N. W., "Kinetic Mechanism for the Reaction between Methanol and Water over a Cu-ZnO-$Al_2O_3$ Catalyst," Appl. Catal. A: Gen., 97, 145-158 (1993). https://doi.org/10.1016/0926-860X(93)80081-Z
  5. Jiang, C, Trimm, D. L. Wainwright, M. S. and Cant, N. W., "Kinetic Study of Steam Reforming of Methanol over Copper-based Catalysts," Appl. Catal. A: Gen., 93, 245-255 (1993). https://doi.org/10.1016/0926-860X(93)85197-W
  6. Agaras, H., Carrella, G. and Lrabode, M. A., "Copper Catalyst for the Steam Reforming of Methanol," Appl. Catal. A: Gen., 45, 53-60 (1998).
  7. Kobayashi, H., Takezawa, N. and Minochi, C, "Methanol Reforming Reaction over Copper Containing Mixed Oxides," Chem. Lett., 12, 1347-1350 (1976).
  8. Takezawa, N., and Iwasa, N., "Steam Reforming and Dehydrogenation of Methanol : Difference in the Catalytic Functions of Copper and Group VI Metals," Catal. Today, 36, 45-56 (1997). https://doi.org/10.1016/S0920-5861(96)00195-2
  9. Amphlett, J. C, Evans, Jones, E. A., Mann, R. F. and Weir R. D., "Hydrogen Production by the Catalytic Steam Reforming of Methanol. Part 1. The Thermodynamics," Can. J. Chem. Eng., 59, 720-727 (1981). https://doi.org/10.1002/cjce.5450590612
  10. Amphlett, J. C, Evans, Mann, R F. and Weir R. D., "Hydrogen Production by the Catalytic Steam Reforming of Methanol. Part 2. Kinetics of Methanol Decomposition Using Girdler G66B Catalyst", Can. J. Chem. Eng., 63, 605-611 (1985). https://doi.org/10.1002/cjce.5450630412
  11. Peters, R., Dusterwald, H. G. and Hohlem, B., "Investigation of a Methanol Reformer Concept Considering the Particular Impact of Dynamics and Long-term Stability for Use in a Fuel-cell-powered Passenger Car," J. Power Sources, 86, 507-514 (2000). https://doi.org/10.1016/S0378-7753(99)00477-2
  12. Idem, R. O. and Bakhshi, N. N., "Production of Hydrogen from Methanol. Part 1. Catalyst Characterization Studies," Ind. Eng. Chem. Res., 33 2047-2055 (1994). https://doi.org/10.1021/ie00033a005
  13. Santacesaria, E. and Carra, S., "Kinetics of Catalytic Steam Reforming of Methanol in a CSTR Reactor," Appl. Catal, 5, 345-358 (1983). https://doi.org/10.1016/0166-9834(83)80162-6
  14. Kawatsu, S., "Advanced PEFC Development for Fuel Cell Powered Vehicles," J. Power Sources, 71, 150-155 (1998). https://doi.org/10.1016/S0378-7753(97)02740-7
  15. Emonts, B., Hansen, J. B., Jorgensen, S. L., Hohlein, B. and Peters, R., "Compact Methanol Reformer Test for Fuel-cell Powered Light-duty Vehicles," J. Power Sources, 71, 288-293 (1998). https://doi.org/10.1016/S0378-7753(97)02724-9
  16. Edwards, N., Ellis, S. R., Frost, J. C, Golunski, S. E., van Keulen, A. N. J., Lindewald, N. G. and Reinkingh, J. G., "On-board Hydrogen Generation for Transport Applications: the HotSpot(TM) Methanol Processor," J. Power Sources, 71, 123-128 (1998). https://doi.org/10.1016/S0378-7753(97)02797-3