참고문헌
- Song, C, "Fuel Processing for Low-temperature and High-temperature Fuel Cells - Challenges and Opportunities for Sustainable Development in the 21st Century," Catal. Today, 77, 17-49 (2002). https://doi.org/10.1016/S0920-5861(02)00231-6
- Kobayashi, H., Takezawa, N., Minochi, C. and Takahashi, K., "Dispersion of Copper Supported on Silica and Methanol Reforming Reaction," Chem. Lett, 9, 1197-1200 (1980). https://doi.org/10.1246/cl.1980.1197
- Jiang, C, Trimm, D. L. and Wainwright, M. S., "New Technology for Hydrogen Production by the Catalytic Oxidation and Steam Reforming of Methanol at Low Temperature," Chem. Eng. Technol., 18, 1-6 (1995). https://doi.org/10.1002/ceat.270180102
-
Jiang, C, Trimm, D. L., Wainwright, M. S. and Cant, N. W., "Kinetic Mechanism for the Reaction between Methanol and Water over a Cu-ZnO-
$Al_2O_3$ Catalyst," Appl. Catal. A: Gen., 97, 145-158 (1993). https://doi.org/10.1016/0926-860X(93)80081-Z - Jiang, C, Trimm, D. L. Wainwright, M. S. and Cant, N. W., "Kinetic Study of Steam Reforming of Methanol over Copper-based Catalysts," Appl. Catal. A: Gen., 93, 245-255 (1993). https://doi.org/10.1016/0926-860X(93)85197-W
- Agaras, H., Carrella, G. and Lrabode, M. A., "Copper Catalyst for the Steam Reforming of Methanol," Appl. Catal. A: Gen., 45, 53-60 (1998).
- Kobayashi, H., Takezawa, N. and Minochi, C, "Methanol Reforming Reaction over Copper Containing Mixed Oxides," Chem. Lett., 12, 1347-1350 (1976).
- Takezawa, N., and Iwasa, N., "Steam Reforming and Dehydrogenation of Methanol : Difference in the Catalytic Functions of Copper and Group VI Metals," Catal. Today, 36, 45-56 (1997). https://doi.org/10.1016/S0920-5861(96)00195-2
- Amphlett, J. C, Evans, Jones, E. A., Mann, R. F. and Weir R. D., "Hydrogen Production by the Catalytic Steam Reforming of Methanol. Part 1. The Thermodynamics," Can. J. Chem. Eng., 59, 720-727 (1981). https://doi.org/10.1002/cjce.5450590612
- Amphlett, J. C, Evans, Mann, R F. and Weir R. D., "Hydrogen Production by the Catalytic Steam Reforming of Methanol. Part 2. Kinetics of Methanol Decomposition Using Girdler G66B Catalyst", Can. J. Chem. Eng., 63, 605-611 (1985). https://doi.org/10.1002/cjce.5450630412
- Peters, R., Dusterwald, H. G. and Hohlem, B., "Investigation of a Methanol Reformer Concept Considering the Particular Impact of Dynamics and Long-term Stability for Use in a Fuel-cell-powered Passenger Car," J. Power Sources, 86, 507-514 (2000). https://doi.org/10.1016/S0378-7753(99)00477-2
- Idem, R. O. and Bakhshi, N. N., "Production of Hydrogen from Methanol. Part 1. Catalyst Characterization Studies," Ind. Eng. Chem. Res., 33 2047-2055 (1994). https://doi.org/10.1021/ie00033a005
- Santacesaria, E. and Carra, S., "Kinetics of Catalytic Steam Reforming of Methanol in a CSTR Reactor," Appl. Catal, 5, 345-358 (1983). https://doi.org/10.1016/0166-9834(83)80162-6
- Kawatsu, S., "Advanced PEFC Development for Fuel Cell Powered Vehicles," J. Power Sources, 71, 150-155 (1998). https://doi.org/10.1016/S0378-7753(97)02740-7
- Emonts, B., Hansen, J. B., Jorgensen, S. L., Hohlein, B. and Peters, R., "Compact Methanol Reformer Test for Fuel-cell Powered Light-duty Vehicles," J. Power Sources, 71, 288-293 (1998). https://doi.org/10.1016/S0378-7753(97)02724-9
- Edwards, N., Ellis, S. R., Frost, J. C, Golunski, S. E., van Keulen, A. N. J., Lindewald, N. G. and Reinkingh, J. G., "On-board Hydrogen Generation for Transport Applications: the HotSpot(TM) Methanol Processor," J. Power Sources, 71, 123-128 (1998). https://doi.org/10.1016/S0378-7753(97)02797-3