빈도수를 고려한 눈동자색 분포맵에 기반한 조명 변화에 강건한 얼굴 검출 방법

Face Detection based on Pupil Color Distribution Maps with the Frequency under the Illumination Variance

  • 조한수 (한중대학교 보건학부 의료정보전공)
  • 투고 : 2009.09.15
  • 발행 : 2009.10.30

초록

본 논문에서는 빈도수를 고려한 눈동자색 분포맵에 기반한 조명변화에 강건한 얼굴 검출 방법을 제안한다. 제안한 방법은 먼저, 피부색 분포맵을 이용하여 검출된 얼굴 후보영역에서 색상성분의 편차를 이용하여 얼굴 후보영역을 축소한다. 이 영역에서 눈 후보점을 탐색하기 위해 눈동자색 분포맵을 적용하여 눈 후보영역을 검출한다. 검출된 눈 후보영역은 조명 보정 기법과 분할 알고리즘에 따라 눈 후보영역을 반복적으로 분할함으로써 조명의 영향으로 얼굴 영역이 아주 어두운 경우에도 눈 검출 성능을 향상할 수 있다. 분할된 눈 후보영역에서 템플릿 정합방법으로 눈 후보점을 검출하고 두 눈 후보점 쌍과 입 평가치를 이용하여 얼굴을 검출하였다. 실험결과 제안된 방법은 좋은 성능을 보였다.

In this paper, a new face detection method based on pupil color distribution maps with the frequency under the illumination variance is proposed. Face-like regions are first extracted by applying skin color distribution maps to a color image and then, they are reduced by using the standard deviation of chrominance components. In order to search for eye candidates effectively, the proposed method extracts eye-like regions from face-like regions by using pupil color distribution maps. Furthermore, the proposed method is able to detect eyes very well by segmenting the eye-like regions, based on a lighting compensation technique and a segmentation algorithm even though face regions are changed into dark-tone due to varying illumination conditions. Eye candidates are then detected by means of template matching method. Finally, face regions are detected by using the evaluation values of two eye candidates and a mouth. Experimental results show that the proposed method can achieve a high performance.

키워드

참고문헌

  1. E. Hjehnas and B.K. Low, "Face detection: a survey," Computer Vision and Image Understanding, 83(3), 2001, pp. 236-274. https://doi.org/10.1006/cviu.2001.0921
  2. M. H. Yang, D. Kriegman, and N. Ahuja, "Detecting Faces in Images: A survey," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 34-58, Jan. 2001. https://doi.org/10.1109/34.982883
  3. V. Govindaraju, S.N. Srihari, and D.B. Sher, "A Computational Model for Face Location," Proc. Third IEEE Int'l Conf. Computer Vision, pp. 718-721, 1990.
  4. R. Brunelli and T. Poggio, "Face Recognition: Features versus Templates," IEEE Trans. PAMI., Vol. 15, pp. 1042-1052, 1993. https://doi.org/10.1109/34.254061
  5. K. K. Sung and T. Poggio, ''Example-based learning for view-based human face detection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 39-51, Jan. 1998. https://doi.org/10.1109/34.655648
  6. H. A. Rowley, S. Baluja, and T. Kanade, "Neural Network-based face detection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 23-38, Jan 1998. https://doi.org/10.1109/34.655647
  7. Yanjiang Wang and Baozong Yuan, "A novel approach for human face detection from color images under complex background," Pattern Recognition vol. 34, pp. 1983-1992, 2001. https://doi.org/10.1016/S0031-3203(00)00119-9
  8. D. Chai and K.N. Ngan, "Face segmentation using skin-color map in videophone applications," IEEE Trans. Circuits System Video Technol. vol. 9, no. 4, pp. 551-564, 1999. https://doi.org/10.1109/76.767122
  9. Rein-Lien Hsu, M. Abdel-Mottaleb, and A. K. Jain, "Face detection in color images," IEEE Trans. Pattern Analysis Machine Intelligence, vol. 24, no. 5, pp. 696-706, 2002. https://doi.org/10.1109/34.1000242