References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
-
W.G. Bade and P.C. Curtis Jr., Prime ideals and automatic continuity problems in Banach modules over
$C^{\ast}$ -algebras, J. Funct Anal. 29 (1978), 88-103. https://doi.org/10.1016/0022-1236(78)90048-4 - H.G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monogr(N.S). 24, Clarendon Press, Oxford University Press, Oxford 2000.
- H.G. Dales and A.R. Vilena, Continuity of derivations, intertwining maps, and cocycles from Banach algebras, J. London Math. Soc. 63 (2001), 215-225. https://doi.org/10.1112/S0024610700001770
- W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161. https://doi.org/10.1007/s00010-005-2775-9
- Z. Gajda. On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
- D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D.H. Hyers, G. Isac and Th.M. Rassias, Stability of functional equations in several variablers, Birkhauser, Basel, (1998).
- K.W. Jun and H.-M. Kim, Stability problem of Ulam for generalized forms of Cauchy functional equation, J. Math. Anal. Appl. 312 (2005), 535-547. https://doi.org/10.1016/j.jmaa.2005.03.052
- K.W. Jun and Y.H. Lee, A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations, J. Math. Anal. Appl. 297 (2004), 70-86. https://doi.org/10.1016/j.jmaa.2004.04.009
- S.-M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320 (2006), 549-561. https://doi.org/10.1016/j.jmaa.2005.07.032
- R. V. Kadison and G. Pederson. Means and convex combinations of unitary operators. Math. Scaud. 57 (1985), 249-266.
- K.B. Laursen, Automatic continuity of generalized intertwining operators, Dissertationes Math. (Rozprawy Mat.) 189 (1981).
- C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-Von Neumann type additive functional equations, J. Inequal. Appl., 2007 (2007), Article ID 41820, 13 pages.
- J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
- Th.M. Rassias, On the stability of the linear mapping In Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th.M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
- J. Roh and I.-S. Chang, Functional inequalities associated with additive mappings, Abstr. Appl. Anal. 2008 (2008), Article ID 136592, 1-10.
- S.M. Ulam, A collection of the mathematical problems, Interscience Publ. New York, (1960).