DOI QR코드

DOI QR Code

X-Ray Photoelectron Spectroscopy Studies of Pd Supported MgO/Mg

X-선 광전자분광법을 이용한 MgO/Mg 표면에 증착된 Pd의 분석

  • Published : 2009.07.30

Abstract

Pd was deposited on magnesium-oxide-covered magnesium ribon substrate by metal thermal evaporation method in high vacuum. The electronic and chemical properties of Pd samples with different coverages were studied using in-situ X-ray Photoelctron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (SEM). For relatively lower amounts of Pd deposited(< 1nm), separate Pd particles could be observed, whereas at higher Pd coverages, Pd thin films caused by agglomeration of Pd nanoparticles was found. The metal support interaction with Pd-support was observed. The Pd atoms on the metal oxide/metal interface were partially negative charged by charge transfer.

본 연구에서는 고진공 조건에서 열기화 증착 방법으로 산화막으로 덮인 Mg 리본(MgO/Mg) 위에 Pd을 증착하였다. 고진공 속에서 만든 시료의 전자구조를 in-situ X-선 광전자 분광법 (XPS)을 통하여 분석하였고, 분석 후, FE-SEM을 통해 증착량의 증가에 따른 표면구조의 변화를 확인하였다. Pd 증착량이 1 나노미터 (nm) 이하인 경우에는 증착량 증가에 따른 Pd 나노입자 크기의 증가를 확인하였으며, Pd을 1 nm 이상의 두께로 증착시킨 경우에는 Pd 입자들의 뭉침에 의해 얇은 필름이 형성됨을 관찰하였다. Pd과 기판사이의 전하이동에 의하여 산화물/금속 계면의 Pd 원자들은 부분적으로 양전하를 띔을 확인하였다.

Keywords

References

  1. M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998) https://doi.org/10.1126/science.281.5383.1647
  2. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, J. Catal 144, 175 (1993) https://doi.org/10.1006/jcat.1993.1322
  3. A. L. De Oliveira, A. Wolf, and F. Schuth, Catal. Lett. 73, 157 (2001) https://doi.org/10.1023/A:1016641708074
  4. D. Stolcic, M. Fischer, G. Gantefor, Y. D. Kim, Q. Sun, and P. Jena, J. Am. Chem. Soc. 125, 2848 (2003) https://doi.org/10.1021/ja0293406
  5. S. H. Jeong, D. C. Lim, J. -H. Boo, S. B. Lee, H. N. Hwang, C. C. Hwang, and Y. D. Kim, Appl. Catal. A. 320, 152 (2007) https://doi.org/10.1016/j.apcata.2007.01.026
  6. J. S. Wu, S. Dhara, C. T. Wu, K. h. Chen, Y. F.Chen, and L. C. Chen, Adv. Mater. 14, 1847 (2002) https://doi.org/10.1002/adma.200290017
  7. H. S. Kim, S. Y. Shin, S. H. Uhm, J. Han, H. N. Hwang, B. Kim, J. W. Chung, Y. D. Kim, and C. C. Hwang, Chem. Pys. Chem. 10, 1270 (2009) https://doi.org/10.1002/cphc.200900001
  8. M. G. Mason, Phys. Rev, B. 27, 748 (1983) https://doi.org/10.1103/PhysRevB.27.748
  9. I. Jirka, Surf. Sci. 232, 307 (1990) https://doi.org/10.1016/0039-6028(90)90123-P
  10. V. Vijayakrishan and C. N. R. Rao, Surf. Sci. Lett. 255, L516 (1991) https://doi.org/10.1016/0039-6028(91)90005-D
  11. Y. Wu, E. Garfunkel, and T. E. Madey, J. Vac. Sci. Technol. A. 14, 1662 (1996) https://doi.org/10.1116/1.580315
  12. H. Hovel, I. Barke, H. -G. Boyen, P. Ziemann, M. G. Garnier, and P. Oelhafen, Phys. Rev. B. 70, 045424 (2004) https://doi.org/10.1103/PhysRevB.70.045424
  13. H.-G. Boyen, A. Ethirajan, G. Kastle, F. Weigl, P. Ziemann, G. Schmid, M. G. Garnier, M. Büttner, and P. Oelhafen, Phys. Rev. Lett. 94, 016804 (2005) https://doi.org/10.1103/PhysRevLett.94.016804
  14. D. -Q. Yang and E. Sacher, Appl. Surf. Sci. 195, 187 (2002) https://doi.org/10.1016/S0169-4332(02)00545-7
  15. S. Zafeiratosm and S. Kennou, Surf. Sci. 443, 238 (1999) https://doi.org/10.1016/S0039-6028(99)01014-6
  16. K. Luo, X. Lai, C. -W. Yi, K. A. Davis, K. K. Gath, and D. W. Goodman, J. Phys. Chem. B. 109, 4064 (2005) https://doi.org/10.1021/jp045948k
  17. G. K. Wertheim, S. B. DiCenzo, and S. E.Youngquist, Phys. Rev. Lett. 51, 2310 (1983) https://doi.org/10.1103/PhysRevLett.51.2310
  18. G. K. Wertheim, S. B. DiCenzo, and D. N. E. Buchanan, Phys. Rev. B. 33, 5384 (1986) https://doi.org/10.1103/PhysRevB.33.5384
  19. W. Eberhardt, P. Fayet, D. M. Cox, A. Kaldor, R. Sherwood, and D. Sondericker, Phys. Rew. Lett. 64, 780 (1990) https://doi.org/10.1103/PhysRevLett.64.780
  20. B. Richter, H. Kuhlenbeck, H. -J. Freund, and P. S. Bagus, Phys. Rev. Lett. 93, 026805 (2004) https://doi.org/10.1103/PhysRevLett.93.026805
  21. V. Vijayakrishnan, A. Chainani, D. D. Sarma, and C. N. R. Rao, J. Phys. Chem. 96, 8679 (1992) https://doi.org/10.1021/j100201a002
  22. A. Howard, D. N. S. Clark, C. E. J. Mitchell, R. G. Egdell, and V. R. Dhanak, Surf. Sci. 518, 210 (2002) https://doi.org/10.1016/S0039-6028(02)02124-6
  23. Y. D. Kim, T. Wei, S. Wendt, and D. W. Goodman, Langmuir. 19, 7929 (2003) https://doi.org/10.1021/la0300075
  24. S. Suzuki, C. Bower, Y. Watanabe, and O. Zhou, Appl. Phys. Lett. 76, 4007 (2000) https://doi.org/10.1063/1.126849
  25. A. Felten, J. Ghijsen, J. -J. Pireaus, W. Drube, R. L. Johnson, D. Liang, M. Hecq, G. Van Tendeloo, and C. Bittencourt, Micron. 40, 74 (2009) https://doi.org/10.1016/j.micron.2008.01.013
  26. Y. D. Kim, J. Stultz, T. Wei, and D. W. Goodman. J. Phys. Chem. B. 106, 6827 (2002) https://doi.org/10.1021/jp0205766
  27. J. N. Andersen, D. Henning, E. Lundgren, M. Methfessel, R. Nyholm, and M. Scheffler, Phys. Rev. B. 50, 17525 (1994) https://doi.org/10.1103/PhysRevB.50.17525

Cited by

  1. X-Ray Photoelectron Spectroscopy Studies of Pd Supported MgO/Mg vol.18, pp.4, 2009, https://doi.org/10.5757/JKVS.2009.18.4.281