소량관수로 인한 난지형 잔디의 생리적 반응

Physiological Responses of Warm-Season Turfgrasses under Deficit Irrigation

  • 이준희 (함평 다이너스티 C.C.) ;
  • ;
  • 발행 : 2009.06.30

초록

본 연구는 전 세계적으로 물 부족 현상으로 인한 물의 사용에 대한 관심이 증가함에 따라 네 종류의 난지형 잔디에 각기 다른 비율의 적자란수를 함으로써 식물의 생리학적인 반응, 즉 시각적 품질, 잎의 물 함량, 엽록소 함량, 광합성, 물 이용효율 등이 어떤 반응을 보이는지를 이해하고 그에 따른 상관관계를 분석 해보고자 했다. 결론적으로 20% 정도 적자 관수를 했을 때 식물은 약간의 스트레스를 받는 상태에서도 적자 관수를 하지 않은 식물과 비교했을 때 광합성량의 차이가 없었으며 가장 이상적인 생리학적인 반응을 보였다. 뿌리 발육 부분에 있어서도 적자관수를 통한 건조스트레스는 깊은 뿌리 생육을 촉진하는 관리방법으로 적용되었다. 다음 연구는 잔디가 각기 다른 토양 수분상태에서 일정하게 유지되었을때 지상부와 지하부의 생육에 따른 생리학적인 반응에 대한 연구로 확대되어야 할 것이다.

Due to increasing concerns over issues with both water quantity and quality for turfgrass use, research was conducted to determine the response of five warm-season turfgrasses to deficit irrigation and to gain a better understanding of relative drought tolerance. St. Augustinegrass(Stenotaphrum secundatum [Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore Paspalum(Paspalum vaginatumSwartz.), 'Empire' zoysiagrass(Zoysia japonica Steud.), and 'Pensacola' bahiagrass(Paspalum notatum Flugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at100%, 80%, 60%, or 40% of evapotranspiration(ET). Evaluations included: a) shoot quality, leaf rolling, leaf firing; b) leaf relative water content(RWC), soil moisture content, chlorophyll content index(CCI), canopy photosynthesis(PS); c) multispectral reflectance(MSR); d) root distribution; and e) water use efficiency. Grasses irrigated at 100% and 80% of ET had no differences in visual quality, leaf rolling, leaf firing, RWC, CCI, and PS. Grasses irrigated at 60% of ET had higher values in physiological aspects than grasses irrigated at 40% of ET. 'Sealsle 1' and 'Palmetto' had a deeper root system than 'Empire' and 'Pensacola', while 'Floratam' had the least amount of root mass. Photosynthesis was positively correlated with visual assessments such as turf quality, leaf rolling, leaf firing, and sensor-based measurements such as CCI, soil moisture, and MSR. Reducing the amount of applied water by 20% did not reduce turfgrass quality and maintained acceptable physiological functioning.

키워드

참고문헌

  1. Barrs, H.D. and P.E. Weatherley. 1962.A reexamination of the relative turgidity techniques for estimating water deficits in leaves. Aust. J. Biol. Sci. 15:413-428 https://doi.org/10.1071/BI9620413
  2. Bray, E.A. 1997. Plant responses to water deficit. Trends in Plant Science 2(2):48-54 https://doi.org/10.1016/S1360-1385(97)82562-9
  3. Davies, W.J. and J. Zhang. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:55-76 https://doi.org/10.1146/annurev.pp.42.060191.000415
  4. Fry, J.D. and J.D. Butler. 1989. Responses of tall and hard fescue to deficit irrigation. Crop Science 29:1536-1541 https://doi.org/10.2135/cropsci1989.0011183X002900060045x
  5. Huang, B. and H. Gao. 1999. Physiological responses of diverse tall fescue cultivars to drought stress. HortScience 34:897-901
  6. Huang, B., R.R. Duncan and R.N. Carrow. 1997. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: I. shoot response. Crop Science 37:1858-1863 https://doi.org/10.2135/cropsci1997.0011183X003700060032x
  7. Huang, B., R.R. Duncan and R.N. Carrow. 1997. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: II. Root aspects. Crop Science 37:1863-1869 https://doi.org/10.2135/cropsci1997.0011183X003700060033x
  8. Huang, B. and J.D. Fry. 1998. Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Science 38: 1017-1022 https://doi.org/10.2135/cropsci1998.0011183X003800040022x
  9. Iturbe-Ormaetxe, I., P.R. Escuredo, C. Arrese-Igor and M Becana. 1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant hysiol. 116:173-181 https://doi.org/10.1104/pp.116.1.173
  10. Jiang, Y. and B. Hung. 2001. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science 41:436-442 https://doi.org/10.2135/cropsci2001.412436x
  11. Jiang, Y. and B. Huang. 2002. Protein alterations in tall fescue in response to drought stress and abscisic acid. Crop Science 42:202-207 https://doi.org/10.2135/cropsci2002.0202
  12. Kim, K.S. and J.B. Beard. 1988. Comparative turfgrass evapotranspiration rates and associated plant morphological characteristics. Crop Science 28:328-331 https://doi.org/10.2135/cropsci1988.0011183X002800020031x
  13. Lee, J.H., L.E. Trenholm and J. B. Unruh. 2003. Technology for irrigation scheduling for St. Augustinegrass. Proc. Fla. State Hort. Soc. 116:319-321
  14. Lee, J.H., L.E. Trenholm and J. B. Unruh. 2003. Evaluating methods of predicting irrigation needs of warm-season turfgrasses. The Florida Green. Spring. p.57-58
  15. Meyer, J.L., V.A. Gibeault and V.B. Youngner. 1985. Irrigation of turfgrass below replacement of evapotranspiration as a means of water conservation: Deterniming crop coefficient of turfgrasses. In F. Lemaire(ed.) Proc. 5th Int. Turfgrass Res.Conf., Avignon, France. 357-364
  16. Shackel, K.A., B. Lampinen, S. Southwick, W. Olson, S. Sibbett, W. Krueger, J. Yeager and D. Goldhamer. 2000. Deficit irrigation in prunes : maintaining productivity with less water. HortScience 35(6):1063-1066