Facile Synthesis of Dendritic-Linear-Dendritic Materials by Click Chemistry

  • Lee, Jae-Wook (Department of Chemistry and Department of Medical Bioscience, Dong-A University) ;
  • Han, Seung-Choul (Department of Chemistry and Department of Medical Bioscience, Dong-A University) ;
  • Kim, Byoung-Ki (Department of Chemistry and Department of Medical Bioscience, Dong-A University) ;
  • Lee, Un-Yup (Department of Chemistry and Department of Medical Bioscience, Dong-A University) ;
  • Sung, Sae-Reum (Department of Chemistry and Department of Medical Bioscience, Dong-A University) ;
  • Kang, Hwa-Shin (Department of Chemistry and Department of Medical Bioscience, Dong-A University) ;
  • Kim, Ji-Hyeon (Department of Chemical and Bio Engineering, Kyungwon University) ;
  • Jin, Sung-Ho (Department of Chemistry Education & Center for Plastic Information System, Pusan National University)
  • Published : 2009.07.25

Abstract

General, fast, and efficient stitching methods are presented for the synthesis of Fr$\acute{e}$chet-type dendrimers with linear units at a core, as a preliminary investigation for the synthesis of dendritic-linear-dendritic materials. The synthetic strategy involved an inexpensive, 1,3-dipolar, cycloaddition reaction between an alkyne and an azide in the presence of the Cu(I) species, which is known as the best example of click chemistry. The linear core building blocks, 1,7-octadiyne and 1,6-diazidohexane, were chosen to serve as the alkyne and azide functionalities for dendrimer growth via click reactions with the azide and alkyne-dendrons, respectively. These two building blocks were employed together with the azide- and alkyne-functionalized Fr$\acute{e}$chet-type dendrons in a convergent strategy to synthesize two kinds of Fr$\acute{e}$chet-type dendrimers with different linear core units. This comparative efficiency of the click methodology supports the fast and efficient synthesis of dendritic-linear-dendritic materials with the tailor made core unit.

Keywords

References

  1. A. C. Grimsdale and K. Mullen, Angew. Chem. Int. Ed., 44, 5592 (2005) https://doi.org/10.1002/anie.200500805
  2. D. A. Tomalia, Prog. Polym. Sci., 30, 294 (2005) https://doi.org/10.1016/j.progpolymsci.2005.01.007
  3. G. R. Newkome, C. N. Moorefield, and F. Vogtle, Dendrimers and dendrons: Concepts, synthesis, applications, Wiley-VCH, Weinheim, 2001
  4. J. M. J. Frechet and D. A. Tomalia, Dendrimers and other dendritic polymers, John Wiely & Sons Ltd., 2002
  5. K. R. Lambrych and I. Gitsov, Macromolecules, 36, 1068 (2003) https://doi.org/10.1021/ma021232g
  6. C. M. B. Santini, M. A. Johnson, J. Q. Boedicker, T. A. Hatton, and P. T. Hammond, J. Polym. Sci. Part A: Polym. Chem., 42, 2784 (2004) https://doi.org/10.1002/pola.20156
  7. E. R. Gillies, T. B. Jonsson, and J. M. J. Frechet, J. Am. Chem. Soc., 126, 11936 (2004) https://doi.org/10.1021/ja0463738
  8. I. Gitsov and J. M. J. Frechet, J. Am. Chem. Soc., 118, 3785 (1996) https://doi.org/10.1021/ja9542348
  9. M. R. Leduc, C. J. Hawker, J. Dao, and J. M. J. Frechet, J. Am. Chem. Soc., 118, 11111 (1996) https://doi.org/10.1021/ja962159a
  10. K. Sill and T. Emrick, J. Polym. Sci. Part A: Polym. Chem., 43, 5429 (2005) https://doi.org/10.1002/pola.20995
  11. M. R. Leduc, W. Hayes, and J. M. J. Frechet, J. Polym. Sci. Part A: Polym. Chem., 36, 1 (1998) https://doi.org/10.1002/(SICI)1099-0518(19980115)36:1<1::AID-POLA3>3.0.CO;2-Z
  12. I. Gitsov, K. R. Lambrych, V. A. Remnant, and R. Pracitto, J. Polym. Sci. Part A: Polym. Chem., 38, 2711 (2000) https://doi.org/10.1002/1099-0518(20000801)38:15<2711::AID-POLA110>3.0.CO;2-1
  13. H. Namazi and M. Adeli, J. Polym. Sci. Part A: Polym. Chem., 43, 28 (2005) https://doi.org/10.1002/pola.20471
  14. I. Gitsov, K. L. Wooley, and J. M. J. Frechet, Angew. Chem. Int. Ed. Engl., 31, 1200 (1992) https://doi.org/10.1002/anie.199212001
  15. I. Gitsov and J. M. J. Frechet, Macromolecules, 26, 6536 (1993) https://doi.org/10.1021/ma00076a035
  16. J. C. M. van Hest, M. W. P. Baars, C. Elissen-Roman, M. H. P. van Genderen, and E. W. Meijer, Macromolecules, 28, 6689 (1995) https://doi.org/10.1021/ma00123a043
  17. J. C. M. van Hest, D. A. P. Delnoye, M. W. P. L. Baars, C. Elissen-Roman, M. H. P. van Genderen, and E. W. Meijer, Chem. Eur. J., 2, 1616 (1996) https://doi.org/10.1002/chem.19960021221
  18. T. M. Chapman, G. L. Hillyer, E. J. Mahan, and K. A. Shaffer, J. Am. Chem. Soc., 116, 11195 (1994) https://doi.org/10.1021/ja00103a060
  19. Z. Ge, S. Luo, and S. Liu, J. Polym. Sci. Part A: Polym. Chem., 44, 1357 (2006) and references therein https://doi.org/10.1002/pola.21261
  20. I. Gitsov, J. Polym. Sci. Part A: Polym. Chem., 46, 5295 (2008) https://doi.org/10.1002/pola.22828
  21. I. Schipor and J. M. J. Frechet, Polym. Prepr., 35, 480 (1994) https://doi.org/10.1016/0032-3861(94)90500-2
  22. V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem. Int. Ed., 41, 2596 (2002) https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
  23. C. W. Tornee, C. Christensen, and M. Meldal, J. Org. Chem., 67, 3057 (2002) https://doi.org/10.1021/jo011148j
  24. P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless, and V. V. Fokin, Angew. Chem. Int. Ed., 43, 3928 (2004) https://doi.org/10.1002/anie.200454078
  25. M. Malkoch, K. Schleicher, E. Drockenmuller, C. J. Hawker, T. P. Russell, P. Wu, and V. V. Fokin, Macromolecules, 38, 3663 (2005) https://doi.org/10.1021/ma047657f
  26. M. J. Joralemon, R. K. O’Reilly, J. B. Matson, A. K. Nugent, C. J. Hawker, and K. L. Wooley, Macromolecules, 38, 5436 (2005) https://doi.org/10.1021/ma050302r
  27. J. W. Lee and B. K. Kim, Bull. Korean Chem. Soc., 26, 658 (2005) https://doi.org/10.5012/bkcs.2005.26.4.658
  28. J. W. Lee, B. K. Kim, and S. H. Jin, Bull. Korean Chem. Soc., 26, 833 (2005) https://doi.org/10.5012/bkcs.2005.26.5.833
  29. J. W. Lee, B. K. Kim, J. H. Kim, W. S. Shin, and S. H. Jin, Bull. Korean Chem. Soc., 26, 1790 (2005) https://doi.org/10.5012/bkcs.2005.26.11.1790
  30. J. W. Lee and B. K. Kim, Synthesis, 615 (2006)
  31. J. W. Lee, J. H. Kim, B. K. Kim, W. S. Shin, and S. H. Jin, Tetrahedron, 62, 894 (2006) https://doi.org/10.1016/j.tet.2005.10.039
  32. J. W. Lee, B. K. Kim, H. J. Kim, S. C. Han, W. S. Shin, and S. H. Jin, Macromolecules, 39, 2418 (2006) https://doi.org/10.1021/ma052526f
  33. J. W. Lee, J. H. Kim, and B. K. Kim, Tetrahedron Lett., 47, 2683 (2006) https://doi.org/10.1016/j.tetlet.2006.02.081
  34. J. W. Lee, B. K. Kim, J. H. Kim, W. S. Shin, and S. H. Jin, J. Org. Chem., 71, 4988 (2006) https://doi.org/10.1021/jo0605905
  35. J. W. Lee, J. H. Kim, B. K. Kim, J. H. Kim, W. S. Shin, and S. H. Jin, Tetrahedron, 62, 9193 (2006) https://doi.org/10.1016/j.tet.2006.07.030
  36. J. W. Lee, J. H. Kim, B. K. Kim, J. H. Kim, W. S. Shin, S. H. Jin, and M. Kim, Bull. Korean Chem. Soc., 27, 1795 (2006) https://doi.org/10.5012/bkcs.2006.27.11.1795
  37. J. W. Lee, J. H. Kim, H. J. Kim, S. C. Han, J. H. Kim, W. S. Shin, and S. H. Jin, Bioconjugate Chem., 18, 579 (2007) https://doi.org/10.1021/bc060256f
  38. J. W. Lee, H. J. Kim, S. C. Han, J. H. Kim, and S. H. Jin, J. Polym Sci. Part A: Polym. Chem., 46, 1083 (2008) https://doi.org/10.1002/pola.22451
  39. B. Helms, J. L. Mynar, C. J. Hawker, and J. M. J. Frechet, J. Am. Chem. Soc., 126, 15020 (2004) https://doi.org/10.1021/ja044744e
  40. J. L. Mynar, T.-L. Choi, M. Yoshida, V. Kim, C. J. Hawker, and J. M. J. Frechet, Chem. Commun., 5169 (2005)
  41. C. J. Hawker and K. L. Wooley, Science, 309, 1200 (2005) https://doi.org/10.1126/science.1109778
  42. R. K. O’Reilly, M. J. Joralemon, C. J. Hawker, and K. L. Wooley, Chem. Eur. J., 12, 6776 (2006) https://doi.org/10.1002/chem.200600467
  43. H. Nandivada, H.-Y. Chen, L. Bondarenko, and J. Lahann, Angew. Chem. Int. Ed., 45, 3360 (2006) https://doi.org/10.1002/anie.200600357
  44. J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev., 36, 1249 (2007) https://doi.org/10.1039/b613014n
  45. G. Lu, S. Lam, and K. Burgess, Chem. Commun., 1652 (2006)
  46. B. A. Laurent and S. M. Grayson, J. Am. Chem. Soc., 128, 4238 (2006) https://doi.org/10.1021/ja0585836
  47. V. Ladmiral, G. Mantovani, G. J. Clarkson, S. Cauet, J. L. Irwin, and D. M. Haddleton, J. Am. Chem. Soc., 128, 4823 (2006) https://doi.org/10.1021/ja058364k
  48. A. P. Vogt and B. S. Sumerlin, Macromolecules, 39, 5286 (2006) https://doi.org/10.1021/ma0610461
  49. M. A. Karim, Y.-R. Cho, J. S. Park, S. C. Kim, H. J. Kim, J. W. Lee, Y.-S. Gal, and S. H. Jin, Chem. Commun., 1929 (2008)
  50. D. Fournier, R. Hoogenboom, and U. S. Schubert, Chem. Soc. Rev., 36, 1369 (2007) https://doi.org/10.1039/b700809k
  51. J.-F. Lutz, Angew. Chem. Int. Ed., 46, 1018 (2007) https://doi.org/10.1002/anie.200604050
  52. W. H. Binder and R. Sachsenhofer, Macromol. Rapid Commun., 28, 15 (2007) https://doi.org/10.1002/marc.200600625
  53. C. J. Hawker and J. M. J. Frechet, J. Am. Chem. Soc., 112, 7638 (1990) https://doi.org/10.1021/ja00177a027
  54. S. M. Grayson and J. M. J. Frechet, Chem. Rev., 101, 3819 (2001) https://doi.org/10.1021/cr990116h
  55. V. D. Bock, H. Hiemstra, and J. H. van Maarseveen, Eur. J. Org. Chem., 51 (2006)
  56. M. Meldal and C. W. Tornoe, Chem. Rev., 108, 2952 (2008) https://doi.org/10.1021/cr0783479
  57. J. W. Lee, S. C. Han, Y.-g. Lee, J. H. Kim, and J. Oh, Bull. Korean Chem. Soc., 29, 1055 (2008) https://doi.org/10.5012/bkcs.2008.29.5.1055
  58. T. K.-K. Mong, A. Niu, H.-F. Chow, C. Wu, L. Li, and R. Chen, Chem. Eur. J., 7, 686 (2001) https://doi.org/10.1002/1521-3765(20010202)7:3<686::AID-CHEM686>3.0.CO;2-Z
  59. C.-H. Wong, H.-F. Chow, S.-K. Hui, and K.-H. Sze, Org. Lett., 8, 1811 (2006) https://doi.org/10.1021/ol0603716
  60. H. Sun and A. E. Kaifer, Org. Lett., 7, 3845 (2005) https://doi.org/10.1021/ol051245p