New Semiconducting Multi-branched Conjugated Molecules Bearing 3,4-Ethylene-dioxythiophene-based Thiophenyl Moieties for Organic Field Effect Transistor

  • Kim, Dae-Chul (Department of Chemistry, Advanced Materials Chemistry Research Center, Korea University) ;
  • Lee, Tae-Wan (Department of Chemistry, Advanced Materials Chemistry Research Center, Korea University) ;
  • Lee, Jung-Eun (Department of Chemistry, Advanced Materials Chemistry Research Center, Korea University) ;
  • Kim, Kyung-Hwan (Department of Chemistry, Advanced Materials Chemistry Research Center, Korea University) ;
  • Cho, Min-Ju (Department of Chemistry, Advanced Materials Chemistry Research Center, Korea University) ;
  • Choi, Dong-Hoon (Department of Chemistry, Advanced Materials Chemistry Research Center, Korea University) ;
  • Han, Yoon-Deok (Department of Physics, Korea University) ;
  • Cho, Mi-Yeon (Department of Physics, Korea University) ;
  • Joo, Jin-Soo (Department of Physics, Korea University)
  • Published : 2009.07.25

Abstract

New $\pi$-conjugated multi-branched molecules were synthesized through the Homer-Emmons reaction using alkyl-substituted, 3,4-ethylenedioxythiophene-based, thiophenyl aldehydes and octaethyl benzene-l,2,4,5-tetrayltetrakis(methylene) tetraphosphonate as the core unit; these molecules have all been fully characterized. The two multi-branched conjugated molecules exhibited excellent solubility in common organic solvents and good self-film forming properties. The semiconducting properties of these multi-branched molecules were also evaluated in organic field-effect transistors (OFET). With octyltrichlorosilane (OTS) treatment of the surface of the $SiO_2$ gate insulator, two of the crystalline conjugated molecules, 7 and 8, exhibited carrier mobilities as high as $2.4({\pm}0.5){\times}10^{-3}$ and $1.3({\pm}0.5){\times}10^{-3}cm^2V^{-1}s^{-1}$, respectively. The mobility enhancement of OFET by light irradiation ($\lambda$ = 436 nm) supported the promising photo-controlled switching behavior for the drain current of the device.

Keywords

References

  1. G. R. Hutchison, M. A. Ranter, and T. J. Marks, J. Phys. Chem., 109, 3126 (2005) https://doi.org/10.1021/jp046579v
  2. J. A. Merlo, C. R. Newman, C. P. Gerlach, T. W. Kelley, D. V. Muyres, S. E. Fritz, M. F. Toney, and C. D. Frisbie, J. Am. Chem. Soc., 127, 3997 (2005) https://doi.org/10.1021/ja044078h
  3. M. Choi, B. Lim, and J. Jang, Macromol. Res., 16, 200 (2008) https://doi.org/10.1007/BF03218853
  4. A. Facchetti, M. H. Yoon, C. L. Stern, G. R. Hutchison, M. A. Ratner, and T. J. Marks, J. Am. Chem. Soc., 126, 13480 (2004) https://doi.org/10.1021/ja048988a
  5. A. Md Showkat, K.-P. Lee, and A. I. Gopalan, Macromol. Res., 15, 575 (2007) https://doi.org/10.1007/BF03218833
  6. F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, and A. P. H. Schenning, Chem. Rev., 105, 1491 (2005) https://doi.org/10.1021/cr030070z
  7. T. L. Truong, N. D. Luong, and J.-D. Nam, Macromol. Res., 15, 465 (2007) https://doi.org/10.1007/BF03218815
  8. H. E. Katz, Z. Bao, and S. L. Gilat, Acc. Chem. Res., 34, 359 (2001) https://doi.org/10.1021/ar990114j
  9. Y. Miyata, T. Nishinaga, and K. Komatsu, J. Org. Chem., 70, 1147 (2005) https://doi.org/10.1021/jo048282z
  10. A. R. Murphy, J. M. J. Frechet, P. Chang, J. Lee, and V. Subramanian, J. Am. Chem. Soc., 126, 1596 (2004) https://doi.org/10.1021/ja039529x
  11. N. Kiriy, A. Kiriy, V. Bocharova, M. Stamm, S. Richter, M. Plotner, W.-J. Fischer, F. C. Krebs, I. Senkovska, and H.-J. Adler, Chem. Mater., 16, 4757 (2004) https://doi.org/10.1021/cm049686a
  12. S. Mohapatra, B. T. Holmes, C. R. Newman, C. F. Prendergast, C. D. Frisbie, and M. D. Ward, Adv. Funct. Mater., 14, 605 (2004) https://doi.org/10.1002/adfm.200400034
  13. A. Cravino, S. Roquet, O. Aleveque, P. Leriche, P. Frere, and J. Roncali, Chem. Mater., 18, 2584 (2006) https://doi.org/10.1021/cm060257h
  14. S. A. Ponomarenko, S. Kirchmeyer, A. Elschner, B.-H. Huisman, A. Karbach, and D. Drechsler, Adv. Funct. Mater., 13, 591 (2003) https://doi.org/10.1002/adfm.200304363
  15. Y. Sun, K. Xiao, Y. Liu, J. Wang, J. Pei, G. Yu, and D. Zhu, Adv. Funct. Mater., 15, 818 (2005) https://doi.org/10.1002/adfm.200400380
  16. J. Pei, J.-L. Wang, X.-Y. Cao, X.-H. Zhou, and W.-B. Zhang, J. Am. Chem. Soc., 125, 9944 (2003) https://doi.org/10.1021/ja0361650
  17. S. A. Ponomarenko, E. A. Tatarinova, A. M. Muzafarov, S. Kirchmeyer, L. Brassat, A. Mourran, M. Moeller, S. Setayesh, and D. De Leeuw, Chem. Mater., 18, 4101 (2006) https://doi.org/10.1021/cm061104x
  18. K. H. Kim, Z. Chi, M. J. Cho, J.-I. Jin, M. Y. Cho, S. J. Kim, J.-S. Joo, and D. H. Choi, Chem. Mater., 19, 4925 (2007) https://doi.org/10.1021/cm071760c
  19. M. Turbiez, P. Fr_re, M. Allain, C. Videlot, J. Ackermann, and J. Roncali, Chem. Eur. J., 11, 3742 (2005) https://doi.org/10.1002/chem.200401058
  20. Q. Tang, L. Li, Y. Song, Y. Liu, H. Li, W. Xu, Y. Liu, W. Hu, and D. Zhu, Adv. Mater., 19, 2624 (2007) https://doi.org/10.1002/adma.200700208
  21. S. Dutta and K. S. Narayan, Adv. Mater., 16, 2151 (2004) https://doi.org/10.1002/adma.200400084
  22. Y. S. Park, D. Kim, H. Lee, and B. Moon, Org. Lett., 8, 4699 (2006) https://doi.org/10.1021/ol061711q
  23. Y. Wei, Y. Yang, and J.-M. Yeh, Chem. Mater., 8, 2659 (1996) https://doi.org/10.1021/cm960182p
  24. F. Yang, X.-L. Xu, Y.-H. Gong, W.-W. Qiu, Z.-R. Sun, J.-W. Zhou, P. Audebert, and J. Tang, Tetrahedron, 63, 9188 (2007) https://doi.org/10.1016/j.tet.2007.06.058
  25. D. H. Lee, D. Kim, T. Oh, and K. Cho, Langmuir, 20, 8124 (2004) https://doi.org/10.1021/la049448u
  26. J. A. Merlo, C. R. Newman, C. P. Gerlach, T. W. Kelley, D. V. Muyres, S. E. Fritz, M. F. Toney, and C. D. Frisbie, J. Am. Chem. Soc., 127, 3997 (2005) https://doi.org/10.1021/ja044078h