References
- R. B. Bapat, J. W. Grossman, D. M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra, 46(4)(1999), 299-312. https://doi.org/10.1080/03081089908818623
- D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
- D. Cvetkovic, Signless Laplacians and line graphs, Bull. Acad. Serbe Sci. Ars. Cl. Sci. Math. Nat. Sci. Math., 131(30) (2005), 85-92.
- D. Cvetkovic, P. Rowlinson, S. K. Simic, Signless Laplacians of finite graphs, Linear Algebra Appl., 423(2007), 155-171. https://doi.org/10.1016/j.laa.2007.01.009
- M. Desai, V. Rao, A characterizaion of the smallest eigenvalue of a graph, J. Graph Theory, 18(1994), 181-194. https://doi.org/10.1002/jgt.3190180210
- Y. Fan, B. S. Tam, J. Zhou, Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a given order, Linear Multilinear Algebra, 56(2008), 381-397. https://doi.org/10.1080/03081080701306589
- L. Feng, Q. Li, X. D. Zhang, Minimizing the Laplacian spectral radius of trees with given matching number, Linear Multilinear Algebra, 55(2)(2007), 199-207. https://doi.org/10.1080/03081080600790040
- L. Feng, G. Yu, No starlike trees are Laplacian cospectral, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat, 18(2007), 46-51.
- J. W. Grossman, D. M. Kulkarni, I. Schochetman, Algebraic graph theory without orientation, Linear Algebra Appl., 212/213(1994), 289-307. https://doi.org/10.1016/0024-3795(94)90407-3
- Y. Hong, X. D. Zhang, Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees, Discrete Math., 296(2005), 187-197. https://doi.org/10.1016/j.disc.2005.04.001
- R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra Appl., 285(1-3)(1998), 33-35. https://doi.org/10.1016/S0024-3795(98)10148-9
- D. B. West, Introduction to Graph Theory, Prentice-Hall, 2001.
Cited by
- The signless Laplacian spectral radius of tricyclic graphs and trees with k pendant vertices vol.435, pp.4, 2011, https://doi.org/10.1016/j.laa.2011.02.002
- Towards a spectral theory of graphs based on the signless Laplacian, II vol.432, pp.9, 2010, https://doi.org/10.1016/j.laa.2009.05.020
- Bounds and conjectures for the signless Laplacian index of graphs vol.432, pp.12, 2010, https://doi.org/10.1016/j.laa.2010.01.027
- Permanental Bounds for the Signless Laplacian Matrix of a Unicyclic Graph with Diameter d vol.28, pp.4, 2012, https://doi.org/10.1007/s00373-011-1057-7
- Color signless Laplacian energy of graphs vol.14, pp.2, 2017, https://doi.org/10.1016/j.akcej.2017.02.003