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Abstract. In this paper, we study the signless Laplacian spectral radius of unicyclic

graphs with prescribed number of pendant vertices or independence number. We also

characterize the extremal graphs completely.

1. Introduction

In this paper, we consider only simple connected graphs. Let G be a sim-
ple graph with vertex set V (G) and edge set E(G). The adjacency matrix of
G is A(G) = (aij) where aij = 1 if two vertices vi and vj are adjacent in G
and 0 otherwise. Let D(G) be the diagonal degree matrix of G. We call the
matrix L(G) = D(G) − A(G) the Laplacian matrix of G, while call the matrix
Q(G) = D(G) + A(G) the signless Laplacian matrix or Q-matrix of G. We denote
the largest eigenvalues of Q(G) by µ(G), and call it the signless Laplacian spectral
radius (or the Q-spectral radius).

Let K = K(G) be the vertex-edge incidence matrix of G. Thus Q(G) = D(G)+
A(G) = KKt and KtK = 2Im+A(LG), where LG is the line graph of G. Since KKt

and KtK have the same nonzero eigenvalues, we can get that µ(G) = 2 + ρ(LG).
Since Q(G) = KKt, we have that for any vector x ∈ Rn, where n is the order of
G, xtQ(G)x =

∑
uv∈E(G)(xu+xv)2, where xu is the eigencomponent corresponding

to the vertex u. So if G is a connected graph, then Q(G) is a symmetric, positive
semidefinite and irreducible nonnegative matrix. By the Perron-Frobenius theorem,
the largest eigenvalue of Q(G) is a simple one and there is a unique (up to a factor)
corresponding eigenvector known as Perron vector. Note that if we add edges to G,
the spectral radius of G will not decreases.

The unicyclic graph is a connected graph whose number of vertices equals to
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its number of edges. Let G be a simple graph. A pendant vertex is a vertex of
degree one. So for a unicyclic graph on n vertices, it has at most n − 3 pendant
vertices. A subset S of V is called an independent set of G if no two vertices in S
are adjacent in G. The independence number of G, denoted by α(G), is the size of
a maximum independent set of G. It is easy to see that the independence number
of a unicyclic graph on n vertices is at most n− 2. For two distinct vertices u and
v of a connected graph G, the distance between u and v, denoted by d(u, v), is the
length of a shortest path joining u and v in G. We use the standard notations in
graph theory as in [12].

The study of the signless Laplacian spectral radius attracts researchers attention
just recently. In [6], Fan et. al. studied the signless Laplacian spectral radius of
bicyclic graph with fixed order. In [5], the authors discussed the smallest eigenvalue
of Q(G) as a parameter reflecting the nonbipartiteness of the graph G. Some other
use of the signless Laplacian can be found in [1], [9], [3]. For a survey of this area,
see [4]. For more results on spectral graph theory, we refer to [2].

We need the following graphs which would be helpful in the sequel. We use ∆k
n

to denote the unicyclic graph on n vertices obtained from a cycle with three vertices
C3 by attaching k paths of almost equal lengths at one vertex of C3.

Let K1,m+1 denote the star on m+2 vertices. If n−1
2 ≤ m < n−1, then U∗n,m is

the unicyclic graph created from K1,m+1 by first adding pendant edges to n−m−2
pendant vertices of K1,m+1, then adding an edge among the rest of the pendant
vertices of K1,m+1, as shown in Fig. 1.
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For example, the graph U∗6,3 is as shown in Fig. 1. Clearly, the graph U∗n,m has n
vertices, m− 1 pendant vertices and independence number m.

For α ≥ 3. Let C3 be the cycle with vertices {v1, v2, v3}. The unicyclic graph
U∗∗n,α, as shown in Fig. 2, is obtained by first attaching one pendant edges to v1
and v2, respectively, and then attaching 2α − n + 1 pendant edges and n − α − 3
paths on two vertices at v3. Clearly, U∗∗n,α has n vertices, α pendant vertices and
independence number α. For example, U∗∗6,3 is shown in Fig. 2.
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In this paper, we study the signless Laplacian spectral radius of unicyclic graphs of
order n with prescribed number of pendant vertices or independence number, and
determine the extremal graphs completely. Precisely, we get the following result.

Theorem 1.1. Let G be a unicyclic graph on n vertices with k pendant vertices.
Then µ(G) ≤ µ(∆k

n), with equality if and only if G = ∆k
n.

Theorem 1.2. Let G be a unicyclic graph on n vertices with independence number
α. Then µ(G) ≤ µ(U∗n,α). The equality holds if and only if G = U∗n,α.

For convenience, we assume that the graph we considered in this paper has at
least 3 vertices.

2. Unicyclic graphs with k pendant vertices

Lemma 2.1. Let G is a connected graph with maximum degree ∆. Then ∆ + 1 ≤

µ(G) ≤ max{du+mu}, where mu =

∑
uv∈E(G) dv

du
. Moreover, the left equality holds

if and only if G is a star, and the right equality holds if and only if G is regular or
semiregular bipartite.

Proof. The left side can be found in [6]. For the right side, the proof is similar to
that in [11], just consider the matrix D +A, and we omit the details. �

Lemma 2.2([10]). Let u, v be two vertices of the connected graph G and dv be the
degree of v, suppose v1, v2, · · · , vs ∈ N(v) \N(u)(1 ≤ s ≤ dv), where v1, v2, · · · , vs
are different from u. Let X = (x1, x2, · · · , xn) be the Perron vector of Q(G), where
xi corresponds to vi, (1 ≤ i ≤ n). Let H be the graph obtained from G by deleting
the edges vvi and adding the edges uvi, 1 ≤ i ≤ s. If xu ≥ xv, then µ(G) < µ(H).

Lemma 2.3([8]). Let u be a vertex of a connected graph G with at least two
vertices. Let G(k, l), k > l ≥ 1, be the graph obtained from G by attaching two
paths Pk+1 = v1v2 · · · vku and Pl+1 = w1w2 · · ·wlu of length k and l, respectively,
at u. If ∆(G(k, l)) ≥ 4, then µ(G(k, l)) < µ(G(k − 1, l + 1)).

Now, we consider the graph Guv obtained from the connected graph G by
subdividing the edge uv, that is, by replacing uv with edges uw, vw, where w is an
additional vertex. We call the following two types of paths internal paths : (a) a
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sequence of vertices v0, v1, · · · , vk+1(k ≥ 2), where v0, v1, · · · , vk are distinct, vk+1 =
v0 of degree at least 3, dvi

= 2 for i = 1, · · · , k, and vi−1 and vi (i = 1, · · · , k + 1)
are adjacent. (b) A sequence of distinct vertices v0, v1, · · · , vk+1(k ≥ 0) such that
vi−1 and vi (i = 1, · · · , k+1) are adjacent, dv0 ≥ 3, dvk+1 ≥ 3 and dvi = 2 whenever
1 ≤ i ≤ k.

Lemma 2.4([7]). Let G be a connected graph and uv be some edge on the internal
path of G as we defined above. If we subdivide uv, that is, substitute it by uw,wv,
with the new vertex w, and denote the new graph by Guv, then µ(Guv) < µ(G).

Now, we can present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let G be a unicyclic graph of order n with k pendant
vertices and maximal signless Laplacian spectral radius. Let X be the eigenvector
corresponding to µ = µ(G), and suppose the eigencomponent corresponding to the
vertex v is xv. Further, let C be the unique cycle of G and u1, u2, · · · , ut, t ≥ 1
be the vertices on C having degree at least 3. Suppose the trees attached to C are
rooted at ui. We discuss in two cases.
(1) If t = 1, then there is only one vertex u1 on C having degree 3. If there
are vertices of degree at least three outside C. Suppose w is such a vertex that
has minimal distance from u. If the distance from u and w at least 1, then by
Lemma 2.4, contract the internal path between u and w, the signless Laplacian
spectral radius does not decrease. Hence there are no vertices of degree at least
three outside C in this case. If the length of the cycle C is greater than 3, then by
Lemma 2.4, we can contracting the internal path on C to make C be a triangle C3,
then subdividing the pendant path outside C, the signless Laplacian spectral radius
increases. Hence, the length of the cycle C is 3. If the lengths of the pendant paths
rooted at u1 are not almost equal, by using Lemma 2.3, we can get the result.
(2) If t ≥ 2. By Lemma 2.2, comparing the eigencomponents of u1, u2, · · · , ut,
we can get a new graph with larger signless Laplacian spectral radius. So this is
impossible. If the length of C is greater than 4, then by Lemma 2.4, we can contract
the internal path on C to make C a triangle, in this way, the signless Laplacian
spectral radius does not decrease. So this is also impossible. �

Corollary 2.5. Let 1 ≤ k < n− 3. Then µ(∆k
n) < µ(∆k+1

n ).

Proof. Since k < n−3, it follows that there is pendant path Pl = v1v2 · · · vl attached
to the root vertex u of ∆k

n such that l ≥ 2. Let G = ∆k
n − {vl−1vl} + {uvl}.

Obviously, G is a unicyclic graph with k + 1 pendant vertices. By Lemma 2.3, we
have µ(∆k

n) < µ(G), by Theorem 1.1, we have µ(G) < µ(∆k+1
n ). Hence we get the

result. �

Corollary 2.6. Of all unicyclic graphs on n vertices, S∗n has the maximum signless
Laplacian spectral radius, where S∗n is obtained from the star on n vertices Sn by
joining any two vertices of degree one.
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3. Unicyclic graph with independence number α

3.1. Useful lemmas

The next lemma plays an important role in our paper. We use the notations in
[12]: α is the vertex independence number. α′ is the edge independence number or
matching number. β is the vertex covering number. β′ is the edge covering number.

The following well known relation is called König-Egerváry theorem: α + β =
α′ + β′ = n.

Lemma 3.1. Let G be a non-bipartite unicyclic graph with n vertices and inde-
pendence number α(G). Suppose the unique cycle is C, then α(G) ≥ dn

2
e − 1, with

equality if and only if G− V (C) has a perfect matching.

Proof. The cycle C must have odd length, say k. Let e be an edge of C. The
graph G− e is bipartite, so α(G− e) ≥ dn

2
e. An independent set S in G− e is also

independent in G unless it contains both endpoints of e. If |S| > dn
2
e, then we can

afford to drop one of these vertices. If |S| = dn
2
e, then we can take the other partite

set instead to avoid the endpoints of e. In each case, α(G) ≥ bn− 1
2
c = dn

2
e − 1.

If G − V (C) has a perfect matching, then an independent set is limited to
k − 1

2
vertices of C and

n− k
2

vertices outside C, so α(G) ≤ n− 1
2

and equality holds.

For the converse, observe that deleting E(C) leaves a forest F in which each com-
ponent has a vertex of C. Let H be a component of F , with u being its vertex on C,
and let r be its order. If H − u has no perfect matching, then α′(H − u) ≤ br

2
c − 1

(that is, it cannot equal
r − 1

2
). Now β(H − u) ≤ br

2
c − 1 by König-Egerváry

theorem, and α(H − u) ≥ dr
2
e, since the complement of a vertex cover is an inde-

pendent set. Since this independent set does not use u, we can combine it with an

independent set of size at least dn− r
2
e in the bipartite graph G− V (H) to obtain

α(G) ≥ dn
2
e. Since this holds for each component of F , α(G) = bn− 1

2
c requires a

perfect matching in G− V (C). �

Lemma 3.2. Let G be a unicyclic graph with n vertices and independence number

α(G). Then α(G) ≥ n− 1
2

.

Proof. If G is bipartite, the α(G) ≥ dn
2
e ≥ n− 1

2
. If G is non-bipartite, then by

Lemma 3.1, α(G) ≥ dn
2
e − 1. If n is odd, then dn

2
e − 1 =

n− 1
2

. If n is even,
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suppose the unique cycle is C, then the equality in Lemma 3.1 would not happen,
since G contains an odd cycle and G− V (C) has odd number of vertices. Hence in

this case, we also have α(G) ≥ dn
2
e ≥ n− 1

2
. �

Remark. If m ≥ n− 1
2

, then ∆m−1
n is identical to U∗n,m.

Lemma 3.3. Let G be a unicyclic graph with n ≥ 3 vertices and independence
number α(G). Then G has at most α(G) pendant vertices.

Proof. This is since all the pendant vertices form an independent set of G. �

3.2. Main results

If α = 1, the unique unicyclic graph is C3 = U∗3,1.

Theorem 3.4. Let G be a unicyclic graphs of order n ≥ 3 with p pendant vertices
and independence number α ≥ 2. If p ≤ α− 1, then µ(G) ≤ µ(U∗n,α), with equality
holding if and only if G = U∗n,α.

Proof. Let G be a unicyclic graph with n ≥ 3 vertices and independence num-
ber α(G). Suppose that G has p pendant vertices. By Theorem 1.1, we have
µ(G) ≤ µ(∆p

n).
Now, by Lemmas 3.2, 3.3 and Corollary 2.5, we have µ(∆p

n) ≤ µ(∆α−1
n ) = µ(U∗n,α),

since ∆α−1
n = U∗n,α for α(G) ≥ n− 1

2
.

Moreover, the first equality holds if and only if G is uniquely at ∆p
n and the second

equality holds if and only if p = α− 1. Hence we complete the proof. �

Next, we consider the case when the number p of pendant vertices of a unicyclic
graph is equal to its independence number α.

Let G be a unicyclic graph and C be the cycle of G with V (C) = {v1, v2, · · · , vt},
t ≥ 3. Note that p = α, then each vi (1 ≤ i ≤ t) has at least one pendant vertex
as its neighbor, since otherwise this would increase the independence number of G.
So we have t ≤ n− α. Since t ≥ 3, we have n ≥ α+ 3.
If t is even, then G is bipartite, and α(G) ≥ dn

2
e ≥ n

2
. If t is odd, then G is

non-bipartite. By Lemma 3.1, the equality in Lemma 3.1 would not happen, since
G contains an odd cycle and G − V (C) has odd number of vertices. Hence in this
case, we also have α(G) ≥ dn

2
e ≥ n

2
. Hence in either case, we have n ≤ 2α.

If α = 1 or 2, there does not exist unicyclic graphs such that p = α.
In the following, we shall assume that α ≥ 3.
If α = 3, then n ≤ 2α = 6. The unicyclic graph with at most 6 vertices satisfying
p = α = 3 is uniquely U∗∗6,3, where U∗∗6,3 is shown in Fig.2.
If G has p = α ≥ 4 pendant vertices, then using Lemma 2.2 on vertices of V (C) =
{v1, v2, · · · , vt}, and by Lemma 2.4 if there are internal paths in the trees attached,
and adding pendant edges to the pendant vertices if necessary, we have µ(G) ≤
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µ(U∗∗n,α). Hence we have the following result.

Theorem 3.5. Let G be a unicyclic graphs of order n ≥ 6 with p pendant vertices
and independence number α ≥ 3. If p = α, then µ(G) ≤ µ(U∗∗n,α), with equality
holding if and only if G = U∗∗n,α.

Theorem 3.6. For 3 ≤ α ≤ n− 3, we have µ(U∗n,α) > µ(U∗∗n,α).

Proof. Suppose 4 ≤ α ≤ n− 3. Then by Lemma 2.1, µ(U∗n,α) ≥ 1 + ∆ = 2 + α ≥ 6.
For U∗n,α, let X be its Perron vector. By symmetry, suppose the eigencomponents
of X as shown in Figure 1. Then from µX = (D +A)X, we have,

µx1 = x1 + x2,

µx2 = 2x2 + x1 + x4,

µx3 = x3 + x4,

µx4 = (α+ 1)x4 + 2x5 + (2α− n+ 1)x3 + (n− α− 2)x2,

µx5 = 2x5 + x5 + x4.

Simplifying the above equation, µ satisfies the equation

(1) µ− α− 1 =
2

µ− 3
+

2α− n+ 1
µ− 1

+
n− α− 2
µ− 2− 1

µ−1

.

Similarly, for U∗∗n,α, by symmetry, we can suppose the eigencomponents are as shown
in Figure 2. From µX = (D +A)X, we have

µx1 = x1 + x2,

µx2 = 2x2 + x1 + x4,

µx3 = x3 + x4,

µx4 = αx4 + 2x5 + (2α− n+ 1)x3 + (n− α− 3)x2,

µx5 = 3x5 + x5 + x4 + x6,

µx6 = x5 + x6.

Simplifying the above equation, µ satisfies the equation

(2) µ− α =
2

µ− 4− 1
µ−1

+
2α− n+ 1
µ− 1

+
n− α− 3
µ− 2− 1

µ−1

.

From equation (1), we have

(3)
2α− n+ 1
µ− 1

= µ− α− 1− 2
µ− 3

− n− α− 2
µ− 2− 1

µ−1

.

Let
f(µ) = µ− α− 2

µ− 4− 1
µ−1

− 2α− n+ 1
µ− 1

− n− α− 3
µ− 2− 1

µ−1

.
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Take (3) into f(µ), we have

f(µ) = 1 +
2

µ− 3
+

1
µ− 2− 1

µ−1

− 1
µ− 4− 1

µ−1

=
µ− 6− 1

µ−1

µ− 4− 1
µ−1

+
2

µ− 3
+

1
µ− 2− 1

µ−1

=
µ− 6

µ− 4− 1
µ−1

− 1
µ2 − 5µ+ 3

+
2

µ− 3
+

1
µ− 2− 1

µ−1

.

Since µ(U∗n,α) ≥ 6, we have, if µ = µ(U∗n,α), then − 1
µ2 − 5µ+ 3

+
2

µ− 3
> 0, and

f(µ(U∗n,α)) > 0, so we have µ(U∗n,α) > µ(U∗∗n,α).
If α = 3, by using a similar method, we also have µ(U∗∗6,3) < µ(U∗6,3).
So we complete the proof. �

Now, we can present the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose G has p pendant vertices. By Lemma 3.2, we have
n− 1

2
≤ α ≤ n− 2. We discuss in the following cases.

(a) If α = 1, then n = 3, and the unique unicyclic graph is U∗3,1 = C3.
(b) If α = 2, then 4 ≤ n ≤ 5. If p = 1 and n = 4, 5, then µ(G) ≤ µ(U∗n,2), with
equality holding if and only if G = U∗n,2. If p = 2, there does not exist such unicyclic
graph.
(c) If α = 3, then 5 ≤ n ≤ 7. If p ≤ 2, then by Theorem 3.4, µ(G) ≤ µ(U∗n,3), with
equality holding if and only if G = U∗n,3. If p = 3, the unique unicyclic graph is
U∗6,3. By Theorem 3.6, we have µ(G) ≤ µ(U∗6,3), with equality holding if and only
if G = U∗6,3.
(d) If 4 ≤ α ≤ n− 3, then by Theorems 3.4, 3.5, 3.6, we have µ(G) ≤ µ(U∗n,α), with
equality holding if and only if G = U∗n,α.
(e) If α = n − 2, note p ≤ n − 3, then by Theorem 3.4, we have µ(G) ≤ µ(U∗n,α),
with equality holding if and only if G = U∗n,α.
Combining the above discussion, we get the result. �

At last, we estimate the signless Laplacian spectral radius of unicyclic graph
described above.

Theorem 3.7. The signless Laplacian spectral radius of U∗n,α satisfies α + 2 <
µ((U∗n,α) ≤ α+3. The right equality holds if and only if α = 1, n = 3, i.e., the graph
is U∗3,1 = C3.

Proof. From Lemma 2.1, we can get the result directly. �

Acknowledgment. The authors are grateful to Professor Li Qiao (in Shanghai
Jiaotong University) for his help.



The Signless Laplacian Spectral Radius of Unicyclic Graphs with Graph Constraints 131

References

[1] R. B. Bapat, J. W. Grossman, D. M. Kulkarni, Generalized matrix tree theorem for
mixed graphs, Linear and Multilinear Algebra, 46(4)(1999), 299-312.
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