Preparation of Vitamin E Acetate Nano-emulsion and In Vitro Research Regarding Vitamin E Acetate Transdermal Delivery System which Use Franz Diffusion Cell

Vitamin E Acetate를 함유한 Nano-emulsion 제조와 Franz Diffusion Cell을 이용한 Vitamin E Acetate의 경표피 흡수에 관한 In Vitro 연구

  • Park, Soo-Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Kim, Jai-Hyun (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Yang, Hee-Jung (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Won, Bo-Ryoung (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Ahn, You-Jin (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Kang, Myung-Kyu (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology)
  • 박수남 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 김재현 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 양희정 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 원보령 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 안유진 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 강명규 (서울산업대학교 자연생명과학대학 정밀화학과)
  • Published : 2009.06.30

Abstract

in the cosmetics and medical supply field as a antioxidant material. The stable nano particle emulsion of skin toner type containing VEA was prepared. To evaluate the skin permeation, experiments on VEA permeation to the skin of the ICR outbred albino mice (12 weeks, about 50 g, female) and on differences of solubility as a function of receptor formulations was performed. The analysis of nano-emulsions containing VEA 0.07 % showed that the higher ethanol contents the larger emulsions were formed, while the higher surfactant contents the size became smaller.In this study, vitamin E acetate (VEA, tocopheryl acetate), a lipid-soluble vitamin which is widely used A certain contents of ethanol in receptor phase increased VEA solubility on the nano-emulsion. When the ethanol contents were 10.0 % and 20.0 %, the VEA solubility was higher than 5.0 % and 40.0 %, respectively. The type of surfactant in receptor solution influenced to VEA solubility. The comparison between three kind surfactants whose chemical structures and HLB values are different, showed that solubility of VEA was increased as order of sorbitan sesquioleate (Arlacel 83; HLB 3.7) > POE (10) hydrogenated castor oil (HCO-10; HLB 6.5) > sorbitan monostearate (Arlacel 60; HLB 4.7). VEA solubility was also shown to be different according to the type of antioxidant. In early time, the solubility of the sample including ascorbic acid was similar to those of other samples including other types of antioxidants. However, the solubility of the sample including ascorbic acid was 2 times higher than others after 24 h. Franz diffusion cell experiment using mouse skin was performed with four nano-emulsion samples which have different VEA contents. The emulsion of 10 wt% ethanol was shown to be the most permeable at the amount of 128.8 ${\mu}g/cm^2$. When the result of 10 % ethanol content was compared with initial input of 220.057 ${\mu}g/cm^2$, the permeated amount was 58.53 % and the permeated amount at 10 % ethanol was higher 45.0 % and 15.0 % than the other results which ethanol contents were 1.0 and 20.0 wt%, respectively. Emulsion particle size used 0.5 % surfactant (HCO-60) was 26.0 nm that is one twentieth time smaller than the size of 0.007 % surfactant (HCO-60) at the same ethanol content. Transepidermal permeation of VEA was 54.848 ${\mu}g/cm^2$ which is smaller than that of particlesize 590.7 nm. Skin permeation of nano-emulsion containing VEA and difference of VEA solubility as a function of receptor phase formulation were determined from the results. Using these results, optimal conditions of transepidermal permeation with VEA were considered to be set up.

본 연구에서는 화장품과 의약품 분야에서 항산화 물질로 널리 사용되고 있는 지용성 비타민인 vitamin E acetate (VEA, tocopheryl acetate)를 이용한 스킨토너 제형의 나노 입자 크기의 에멀젼을 제조하고, 이 에멀젼을 이용해 ICR outbred albino mice (12주령 약 50 g, 암컷) 피부로의 VEA 침투와 receptor phase 조성에 따른 VEA의 용해도 차이에 대한 실험을 수행하였다. VEA를 0.07 wt% 함유한 nano-emulsion의 입자는 에탄올(ethanol, EtOH) 함량이 많을수록 그 크기가 커지는 경향을 보였고 계면활성제 함량이 많은 경우 크기가 작아지는 것을 확인하였다. Receptor phase에서 적절한 EtOH 함량이 VEA의 용해도를 증가시켰다. EtOH 함량이 5.0, 40.0 wt%인 경우보다 10.0, 20.0 wt% 일 때 VEA의 용해도가 높은 것을 확인하였다. Receptor phase의 계면활성제 종류 역시 VEA 용해도에 영향을 주는 것을 확인하였다. 화학구조와 HLB값이 다른 세 가지 계면활성제를 비교한 결과 sorbitan sesquioleate (Arlacel 83; HLB 3.7) > POE (10) hydrogenated castor oil (HCO-10; HLB 6.5) > sorbitan monostearate (Arlacel 60; HLB 4.7)순으로 VEA에 대한 용해도가 증가하였다. Receptor phase에 첨가된 산화 방지제 종류에 따라서도 VEA의 용해도는 차이를 보였다. Ascorbic acid를 함유한 시료는 EDTA-2Na가 첨가된 시료보다 VEA 용해도가 높았고 이 두 가지 산화방지제를 혼합한 시료와 초기에 비슷한 용해도를 보였지만 시간이 지남에 따라 양상이 달라져 최종 24 h 뒤에는 2배 정도의 높은 용해도를 보였다. 네 가지 다른 함량의 VEA 함유 nano-emulsion을 이용하여 쥐 피부 Franz diffusion cell 실험을 수행한 결과 EtOH 함량이 10.0 wt%인 경우에 128.8 ${\mu}g/cm^2$으로 VEA가 가장 높게 검출되었다. 이것은 초기 VEA 투입량인 220.057 ${\mu}g/cm^2$과 비교하여 58.53 %가 투과된 것으로 EtOH 함량이 1.0, 20.0 wt%인 에멀젼과 비교해 볼 때 각각 45 %, 15 %씩 높았다. 동일한 EtOH 농도로 제조한 에멀젼과 비교했을 때, 0.5 wt% 계면활성제를 사용한 에멀젼의 입자 크기는 계면활성제 0.007 wt% 에멀젼 입자 크기의 1/20 정도인 26.0 nm로 매우 작았다. 하지만 쥐 피부를 투과하는 VEA의 양은 54.848 ${\mu}g/cm^2$ 로 128.8 ${\mu}g/cm^2$ 의 투과량을 보인 0.007 wt% 계면활성제 함유 에멀젼보다 적었다. 이상의 결과들로 VEA를 함유한 nano-emulsion의 피부 투과도와 receptor phase 조성에 따른 VEA의 용해도 차이를 확인하였다. 이러한 결과들을 이용하여 VEA를 피부 내로 침투시키는 데 필요한 최적의 조건을 확립할 수 있을 것으로 사료된다.

Keywords

References

  1. H. M. Evans and K. S. Bishop, On the existence of a hitherto unrecognized dietary factor essential for reproduction, Science, 56, 650 (1922) https://doi.org/10.1126/science.56.1458.650
  2. R. Brigelius-Flohéand M. G. Traber, Vitamin E: function and metabolism, J. FASEB, 13(10), 1145 (1999)
  3. R. Stocker and J. F. Keaney Jr., Role of oxidative modifications in atherosclerosis, Physiol. Rev., 84, 1381 (2004) https://doi.org/10.1152/physrev.00047.2003
  4. D. F. Counts, F. Skreko, J. McBee, and A. G. Wich, The effect of retinyl palmitate on skin composition and morphometry, J. Soc. Cosmetic Chemists, 39(4), 235 (1988)
  5. B. Idson, Vitamins and the skin, Cosmet. Toilet, 108, 7992 (1993)
  6. E. Herrera and C. Barbas, Vitamin E: action, metabolism and perspectives, J. Physiol. Biochem., 57(2), 43 (2001) https://doi.org/10.1007/BF03179812
  7. L. Packer, S. U. Weber, and G. Rimbach, Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling, J. Nutr., 131(2), 369 (2001) https://doi.org/10.1093/jn/131.2.369S
  8. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea, 23, 75 (1997)
  9. H. Moller, A. Ansmann, and S. Wallat, The effects of vitamin E on the skin in topical applications, Fat. Sci. Technol., 8, 295 (1989)
  10. M. J. Fryer, Evidence for the photoprotective effects of vitamin E, Photochem. Photobiol., 58, 304 (1993) https://doi.org/10.1111/j.1751-1097.1993.tb09566.x
  11. M. G. Traber and J. Atkinson, Vitamin E, antioxidant and nothing more, Free Radic. Biol. Med., 43(1), 4 (2007) https://doi.org/10.1016/j.freeradbiomed.2007.03.024
  12. X. Wang and P. Quinn, Vitamin E and its function in membranes, Prog. Lipid Res., 38(4), 309 (1999) https://doi.org/10.1016/S0163-7827(99)00008-9
  13. R. Brigelius-Floh$\'{e}$, Vitamin E: the shrew waiting to be tamed, Free Radic. Biol. Med., 46(5), 543 (2009) https://doi.org/10.1016/j.freeradbiomed.2008.12.007
  14. K. Briviba and H. Sies, Peroxynitrite does not decompose to singlet oxygen ($^{1}O_2$) and nitroxyl (HNO), FEBS Lett., 355, 287 (1994) https://doi.org/10.1016/0014-5793(94)01224-5
  15. S. Clough, A. Heidemann, and H. Kraxenberger, Torsional relaxation of methyl-group nuclear-spinsymmetry species, Phys. Rev. Lett., 42, 1298 (1979) https://doi.org/10.1103/PhysRevLett.42.1298
  16. H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, Fourier transform infrared study of the kinetics and mechanism for the reaction of hydroxyl radical with formaldehyde, J. Phys. Chem., 88, 5342 (1984) https://doi.org/10.1021/j150666a047
  17. G. M. Beijersbergen van Henegouwen, H. E. Junginger, and H. de Vries, Hydrolysis of R,R,R-alpha-tocopheryl acetate (vitamin E acetate) in the skin and its UV protecting activity (an in vivo study with the rat), J. Photochem. Photobiol. B., 29(1), 45, (1995) https://doi.org/10.1016/1011-1344(95)90251-1
  18. S. Shahriar, Nanoemulsion formation by phase inversion emulsification: on the nature of inversion, Langmuir, 22, 5597 (2006) https://doi.org/10.1021/la060043e
  19. J. S. Kim, D. H. Kwon, D. H. Lim, G. S. Kim, and C. Y. Kang, in vitro study of transdermal delivery system for caffein in slim patch type, J. Kor. Pharm. Sci., 36(2), 97 (2006) https://doi.org/10.4333/KPS.2006.36.2.097
  20. D. W. Nierenberg, D. C. Lester, and T. A. Colacchio, Determination of tocopherol and tocopherol acetate concentrations in human feces using highperformance liquid chromatography, J. Chromatography, 2(413), 79 (1987) https://doi.org/10.1016/0378-4347(87)80215-3
  21. X. Qingyi, N. Mitsutoshi, N. Hiroshi, I. Satoshi, and L. Xinqi, The effects of ethanol content and emulsifying agent concentration on the stability of vegetable oil-ethanol emulsions, J. American Oil Chemists' Society, 12(78), 1185 (2006) https://doi.org/10.1007/s11745-001-0411-z