The Effects of Ethanol on Nano-emulsions Containing Quercetin Prepared by Emulsion Inversion Point Method

에멀젼 반전법으로 제조된 쿼세틴을 함유하는 나노에멀젼에 대한 에탄올의 영향

  • Park, Soo-Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Won, Bo-Ryoung (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Kang, Myung-Kyu (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Ahn, You-Jin (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology)
  • 박수남 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 원보령 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 강명규 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 안유진 (서울산업대학교 자연생명과학대학 정밀화학과)
  • Published : 2009.06.30

Abstract

The objective of this study was to find out the stable formulation of nano-emulsion containing high concentration of quercetin and to investigate the effect of an ethanol on the nano-emulsion prepared by POE (30) hydrogenated castor oil (HCO-30)/oil/quercetin/ethanol/water system. Nano-emulsion was prepared using emulsion inversion point (EIP) method as low-energy method plus homogenizer as high-energy method. To evaluate effect of ethanol and other components on the nano-emulsion, physical properties such as droplet size, morphology, and size distribution were determined. The optimal quercetin concentration was 0.2 % on the nano-emulsion. The droplet diameter was below 300 nm at the HCO-30 concentration below 2.00 %. Nano-emmulsion containing 4.75 % HCO-30 was the most stable and its mean droplet size was 172.40 nm. Finally, the size of nano-emulsion containing 4.00 % ethanol was 128.15 nm and size distribution was also narrow. The results showed that the breakdown process of this nano-emulsion could be attributed to Ostwald ripening. This study about effect of ethanol on the nano-emulsion showed that loading capacity of drug could be increased by using a small amount of ethanol. As prepared stable nano-emulsion, this study showed that these results could be applied to pharmaceutics, cosmetic including skin-care products, perfume and etc.

본 연구에서는 고농도의 쿼세틴을 함유하는 안정한 나노에멀젼의 조성을 찾고 POE (30) hydrogenated castor oil (HCO-30)/오일/쿼세틴/에탄올/물로 이루어진 나노에멀젼에 대한 에탄올의 영향을 연구하였다. 나노에멀젼은 저에너지법인 emulsion inversion point (EIP) 법과 고에너지법인 균질기(homogenizer)를 병합하여 제조하였다. 나노에멀젼에 대한 에탄올과 다른 성분들의 영향을 평가하기 위해 입자 크기, 에멀젼의 형태, 그리고 입자 분포와 같은 물리적 특성을 조사하였다. 나노에멀젼에 대한 쿼세틴의 최적 농도는 0.2 %였다. 계면활성제인 POE (30) hydogenated castor oil (HCO-30) 농도에 따른 나노에멀젼의 입자 크기를 보면, 2.00 %부터는 에멀젼의 입자 크기는 300 nm 이하였으며 HCO-30을 4.75 % 함유하는 나노에멀젼이 가장 안정하고 입자 크기도 172.40 nm로 나타났다. 마지막으로 에탄올 4.00 %를 함유한 나노에멀젼의 입자 크기는 128.15 nm이고 입도 분포 또한 좁게 나타났다. 나노에멀젼의 불안정화 과정은 Ostwald ripening에 의한 것으로 보여진다. 나노에멀젼에 대한 에탄올의 영향을 연구함으로써 소량의 에탄올을 이용하여 약물의 봉입률을 증가시킬 수 있으며, 안정한 나노에멀젼을 만듦으로써 스킨 로션, 에센스 및 향수와 같은 화장품과 제약 등에 응용될 수 있을 것으로 사료된다.

Keywords

References

  1. J. Ugelstad, M. S. El-Aasser, and J. W. Vanderhoff, Emulsion polymerization: initiation of polymerization in monomer droplet, Polym. Lett. Ed., 11, 503 (1973) https://doi.org/10.1002/pol.1973.130110803
  2. M. S. El-Aasser, C. D. Lack, Y. T. Choi, T. I. Min, J. W. Vanderhoff, and F. M. Fowkes, Interfacial aspects of miniemulsions and miniemulsion polymers, Colloids Surf., 12, 79 (1984) https://doi.org/10.1016/0166-6622(84)80091-8
  3. M. S. El-Aasser, C. D. Lack, J. W. Vanderhoff, and F. Fowkes, The miniemulsification process different form of spontaneous emulsification, Colloids Surf., 29, 103 (1988) https://doi.org/10.1016/0166-6622(88)80174-4
  4. M. S. El-Aasser and C. M. Miller, In polymeric dispersions: principles and applications, ed. Asua, J. M., Kluwer Academic Publishers: Dordrecht, The Netherlands, 109 (1997)
  5. E. D. Sudol and M. S. El-Aasser, In emulsion polymerization and emulsion polymers, P. A. Lovell and M. S. El-Aasser, Eds., John Wiley & Sons, Ltd., Chichester, United Kingdom, 700 (1997)
  6. H. Nakajima, In industrial applications of microemulsions, Eds. C. Solans, H. Kunieda, Marcel Dekker, New York, 66, 175 (1997)
  7. H. Nakajima, S. Tomomasa, and M. Okabe, Premier congress mondial de emulsion, Paris, France, 162 (1993)
  8. F. Lachampt and R. M. Vila, A contribution to the study of emulsions, Am. Perfum Cosmet., 82(1), 29 (1967)
  9. F. Lachampt and R. M. Vila, Parfumes cosmetics, Savons, 10, 372 (1967)
  10. F. Lachampt and R. M. Vila, Parfumes cosmetics, Savons, 12, 239 (1967)
  11. S. Amselem and D. Friedman, Submicron emulsions as drug carriers for topical administration: submicron emulsions in drug targeting and delivery, ed. S. Benita Harwood Academic Publishers, London, 153 (1998)
  12. C. Solans, J. Esquena, A. Forgiarini, D. Morales, N. Uso´n, and P. Izquierdo, Nano emulsions: formation and properties: surfactants in solution: fundamentals and applications, Surfactant Science Series, eds. D. Shah, B. Moudgil, K. L. Mittal, Marcel Dekker, New York, 525 (2002)
  13. T. F. Tadros, P. Izquierdo, J. Esquena, and C. Solans, Formation and stability of nano-emulsions, Adv. Colloid Interface Sci., 108, 303 (2004) https://doi.org/10.1016/j.cis.2003.10.023
  14. C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, Nano-emulsions, Current Opinion Colloid Interface Sci,, 10, 102 (2005) https://doi.org/10.1016/j.cocis.2005.06.004
  15. N. Singh, B. Manshian, G. J. S. Jenkins, S. M. Griffiths, P. M. Williams, T. G. G. Maffeis, C. J. Wright, S. H. Doak, T. G. G. Maffeis b, C. J. Wright b, and S. H. Doak b, Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials, Biomaterials, 30, 3891 (2009) https://doi.org/10.1016/j.biomaterials.2009.04.009
  16. L. Marszall, In nonionic surfactants: surfactant science series, ed. M. J. Shick, Marcel Dekker, New York, 23, 493 (1987)
  17. K. Shinoda and H. J. Saito, The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant, Colloid Interface Sci., 26, 70 (1968) https://doi.org/10.1016/0021-9797(68)90273-7
  18. C. F. Skibola and M. T. Smith, Potential health impacts of excessive flavonoid intake, Free Radic. Biol. Med., 29(3), 375 (2000) https://doi.org/10.1016/S0891-5849(00)00304-X
  19. I. Morel, G. Lescoat, P. Cogrel, O. Serqent, N. Pasdeloup, P. Brissot, P. Cillard, and J. Cillard, Antioxidant and iron-chelation activities of the flavonoids catechin, quercetin and diosmetin on ironloaded rat hepatocyte cultures, Biochem. Pharmacol., 45, 13 (1993) https://doi.org/10.1016/0006-2952(93)90371-3
  20. P. Knekt, R. Jarvinen, A. Reunanen, and J. Maatela, Flavonoid intake and coronay mortality in Finland: a cohort study, Br. Med. J., 312, 478 (1996) https://doi.org/10.1136/bmj.312.7029.478
  21. M. G. Hertog, P. M. Sweetnam, A. M. Fehily, P. C. Elwood, and D. Kromhout, Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly study, Am. J. Clin. Nutr., 65, 1489 (1997) https://doi.org/10.1093/ajcn/65.5.1489
  22. C. A. Rice-Evans, N. J. Miller, and G. Paganga, Antioxidant properties of phenolic compounds, Trends Plant Sci., 2, 152 (1997) https://doi.org/10.1016/S1360-1385(97)01018-2
  23. P. Mahakunakorn, M. Tohda, Y. Murakami, K. Matsumoto, and H. Watanabe, Antioxidant and free radical-scavenging activity of Choto-san and its related constituents, Biol. Pharm. Bull., 27, 38 (2004) https://doi.org/10.1248/bpb.27.38
  24. Y. Sadzuka, T. Sugiyama, K. Shimoi, N. Kinae, and S. Hirota, Protective effect of flavonoids on doxorubicin induced cardio toxicity, Toxicol. Letters, 92, 1 (1997) https://doi.org/10.1016/S0378-4274(97)00028-3
  25. M. F. Molina, I. Sanchez-Reus, I. Iglesias, and J. Benedi, Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver, Biol. Pharm. Bull., 26, 1398 (2003) https://doi.org/10.1248/bpb.26.1398
  26. X. Dong, G. Z. Zhen-Lun, B. J. Ping, and W. Zhong, Effects of quercetin on aggregation and intracellular free calcium of platelets, Acta. Pharmacol. Sin., 16, 223 (1995)
  27. S. M. Thornhill and A. M. Kelly, Natural treatment of perennial allergic rhinitis, Altern. Med. Rev., 5, 448 (2000)
  28. D. H. Kim, E. A. Jung, I. S. Sohng, J. A. Han, T. H. Kim, and M. J. Han, Intestinal bacterial metabolism of flavonoids and its relation to some biological activities, Arch. Pharm. Res., 21, 17 (1998) https://doi.org/10.1007/BF03216747
  29. I. K. Chun and E. H. Suh, Solubilization of quercetin, and permeability study of quercetin and rutin to rabbit duodenal mucosa, Yakhak Hoeji, 42, 59 (1998)
  30. E. Dickinson and C. M. Woskett, Effect of alcohol on the absorption of casein at the oil-water interface, Food Hydrocoll., 2(3), 187 (1988) https://doi.org/10.1016/S0268-005X(88)80017-1
  31. I. Burgaud and E. Dickinson, Emulsifying effects of food macromolecules in presence of ethanol, J. Food Sci., 55(3), 875 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb05257.x
  32. P. Fernandez, V. Andre, J. Rieger, and A. Kuhnle, Nano-emulsion formation by emulsion phase inversion, Colloids and Surfaces A: Physicochem. Eng. Aspects, 251, 53 (2004) https://doi.org/10.1016/j.colsurfa.2004.09.029
  33. B. J. Berne and R. Pecora, Dynamic light scattering with applications to chemistry, biology and physics, Wiley-Interscience, New York, 15 (1976)
  34. C. Goddeeris, F. Cuppo, H. Reynaers, W. G. Bouwman, and G. Van den Mooter, Light scattering measurements on microemulsions: estimation of droplet sizes, J. Pharmaceutics, 312, 187 (2006) https://doi.org/10.1016/j.ijpharm.2006.01.037
  35. W. R. Liu, D. J. Sun, C. F. Li, Q. Liu, and J. Xu, Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method, J. Colloid Interface Sci., 303(2), 557 (2006) https://doi.org/10.1016/j.jcis.2006.07.055