A comparative analysis of basic characteristics of several deproteinized bovine bone substitutes

수종의 탈단백 우골 이식재의 특성 비교 분석

  • Yeo, Shin-Il (Department of Periodontology, School of Dentistry) ;
  • Park, Sung-Hwan (Department of Periodontology, School of Dentistry) ;
  • Noh, Woo-Chang (Department of Periodontology, School of Dentistry) ;
  • Park, Jin-Woo (Department of Periodontology, School of Dentistry) ;
  • Lee, Jae-Mok (Department of Periodontology, School of Dentistry) ;
  • Suh, Jo-Young (Department of Periodontology, School of Dentistry, Institute for Hard tissue and Bio-tooth Regeneration(IHBR), School of Dentistry, Kyungpook National University)
  • 여신일 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 박성환 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 노우창 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 박진우 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 이재목 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 서조영 (경북대학교 치의학전문대학원 치주과학교실, 경조직 바이오치아 재생연구소)
  • Published : 2009.06.30

Abstract

Purpose: Deproteinized bovine bone substitutes are commonly used in dental regenerative surgery for treatment of alveolar defects. In this study, three different bovine bone minerals - OCS-B (NIBEC, Seoul, Korea), Bio-Oss (Geistlich - Pharma, Switzerland), Osteograft/N - 300 (OGN, Dentsply Friadent Ceramed. TN, USA) - were investigated to analyze the basic characteristics of commercially available bone substitutes. Methods: Their physicochemical properties were evaluated by scanning electron microscopy, energy dispersive X-ray spectrometer (EDS), surface area analysis, and Kjeldahl protein analysis. Cell proliferation and alkaline phosphatase (ALP) activity of human osteosarcoma cells on different bovine bone minerals were evaluated. Results: Three kinds of bone substitutes displayed different surface properties. Ca/P ratio of OCS - B shown to be lower than other two bovine bone minerals in EDS analysis. Bio-Oss had wider surface area and lower amount of residual protein than OCS - B and OGN. In addition Bio - Oss was proved to have lower cell proliferation and ALP activity due to lots of residual micro particles, compared with OCS - B and OGN. Conclusions: Based on the results of this study, three bovine bone minerals that produced by similar methods appear to have different property and characteristics. It is suggested that detailed studies and quality management is needed in operations for dental use and its biological effects on new bone formation.

Keywords

References

  1. Borstlap WA, Heidbuchel KL, Freihofer HP, Kuijpers-Jagtman AM. Early secondary bone grafting of alveolar cleft defects: A comparison between chin and rib grafts. J Craniomaxillofac Surg 1990;18:210-205 https://doi.org/10.1016/S1010-5182(05)80413-5
  2. Tayapongsak P, Wimsatt JA, LaBanc JP, Dolwick MF. Morbidity from anterior ilium bone harvest : A comparative study of lateral versus medial surgical approach. Oral Surg Oral Med Oral Pathol 1994;78:296-300 https://doi.org/10.1016/0030-4220(94)90057-4
  3. Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin Implant Dent Relat Res 2003;5:154-160 https://doi.org/10.1111/j.1708-8208.2003.tb00197.x
  4. Emmings FG. Chemically modified osseous material for the restoration of bone defects. J Periodontol 1974;45:385-390 https://doi.org/10.1902/jop.1974.45.5.2.385
  5. Froum SJ, Thaler R, Scopp IW, Stahl SS. Osseous autografts. I. Clinical responses to bone blend or hip marrow grafts. J Periodontol 1975;46:515-521 https://doi.org/10.1902/jop.1975.46.9.515
  6. Mellonig JT. Autogenous and allogeneic bone grafts in periodontal therapy. Crit Rev Oral Biol Med 1992;3:333-352 https://doi.org/10.1177/10454411920030040201
  7. Rosenberg E, Rose LF. Biologic and clinical considerations for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am 1998;42:467-490
  8. Wolff LF. Guided tissue regeneration in periodontal therapy. Northwest Dent 2000;79:23-28
  9. Schmitt JM, Buck DC, Joh SP, Lynch SE, Hollinger JO. Comparison of porous bone mineral and biologically active glass in critical-sized defects. J Periodontol 1997;68:1043-1053 https://doi.org/10.1902/jop.1997.68.11.1043
  10. Mangano C, Bartolucci E, Mazzocco C. A new porous bydroxyapatite for promotion of bone regeneration in maxillary sinus augmentation: clinical and histologic study in humans. Clin Oral Implants Res 2003;18:23-30
  11. Wiltfang J, Schlegel KA, Schultze-Mosgau S et al. Sinus floor augmentation with β-tricalciumphosphate(β-TCP): dose platelet-rich plasma promote its osseo-intergration and degradation. Clin Oral Implants Res 2003;14:213-218 https://doi.org/10.1034/j.1600-0501.2003.140212.x
  12. Barnett JD, Mellonig JT, Gray JL, Towle HJ. Comparison of freeze-dried bone allograft and porous hydroxyapatite in human periodontal defects. J Periodontol 1989;60:231-237 https://doi.org/10.1902/jop.1989.60.5.231
  13. Mellonig JT. Freeze-dried bone allografts in periodontal reconstructive surgery. Dent Clin North Am 1991;35:505-520
  14. Schllohorn RG, McClain PK. Combined osseous composite grafting, root conditioning and guided tissue regeneration. Int J Periodontics Restorative Dent 1998;8:8-30
  15. Gross J. Bone grafting material for dental application: A practical guide. Compendium 1997;18:1013-1036
  16. Slotte C, Lundgren D. Augmentation of calvarial tissue using non-permeable silicone domes and bovine bone mineral. An experimental study in the rat. Clin Oral Implants Res 1999;10:468-476 https://doi.org/10.1034/j.1600-0501.1999.100605.x
  17. de Bruijn JD, Klein CP, de Groot K, van Blitterswijk CA. The ultrastructure of the bone-hydroxyapatite interface in vitro. J Biomed Mater Res 1992;26:1365-1382 https://doi.org/10.1002/jbm.820261008
  18. Rosen BV, Hobbs LW, Spector M. The ultrastructure of anorganic bovine bone and selected synthetic hydroxyapatite used Bone:present and future. In: Babbush CA, editor, Dental implants: the art and science/edited by Babbush CA. W.B. Sanduers Company. Philadelphia 2001, p.70
  19. Yildirim M, Spiekermann H, Handt S, Edelhoff D. Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site: a histologic and histomorphometric clinical study in humans. Int J Oral Maxillofac Implants 2001;16:23-33
  20. Mellonig JT. Human histologic evaluation of a bovine-derived bone xenograft in the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent 2000;20:19-29
  21. Harris RJ. Human histologic evaluation of a bone graft combined with GTR in the treatment of osseous dehiscence defects: a case report. Int J Periodontics Restorative Dent 2000;20:510-519
  22. Wetzel AC, Stich H, Caffesse RG. Bone apposition onto oral implants in the sinus area filled with different frafting materials. Clin Oral Implants Res 1995;6:155-163 https://doi.org/10.1034/j.1600-0501.1995.060304.x
  23. Klinge B, Alberius P, Isaksson S, Jonsson J. Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofac Surg 1992;50:241-249 https://doi.org/10.1016/0278-2391(92)90320-Y
  24. Wheeler SL, Holmes RE, Clahoun CJ. Six-year clinical and histologicstudy of sinus-lift grafts. Int J Oral Maxillofac Implants 1996;11:26-34
  25. Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res 1997;8:117-124 https://doi.org/10.1034/j.1600-0501.1997.080206.x
  26. Skoglund A, Hising P, Young C. A clinical and histologic examination in humans of the osseous response to implanted natural bone mineral. Int J Oral Maxillofac Implants 1997;12:194-199
  27. Valentini P, Bbensur D, Densari D, Graziani JN, Hammerle C. Histological evaluation and implantation procedure. A human case report. Clin Oral Implants Res 1998;9:59-64 https://doi.org/10.1034/j.1600-0501.1998.090108.x
  28. Eisenbarth E, Velten D, Muller M, Thull R, Breme J. Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials 2004;25:5705-5713 https://doi.org/10.1016/j.biomaterials.2004.01.021
  29. Piattelli M, Favero GF, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone used insiuns lifting procedure: a histologic long-term report of 20 cases in man. Int J Oral Maxillofac Implants 1999;14:835-840
  30. Norton MR, Odell EW, Thompson ID, Cook RJ. Efficacy of bovine bone mineral for alveolar augmentation: a human histologic study. Clin Oral Implants Res 2003;14:775-783 https://doi.org/10.1046/j.0905-7161.2003.00952.x
  31. Buser D, Bragger U, Land NP, Nyman S. Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implants Res 1990;1:22-32 https://doi.org/10.1034/j.1600-0501.1990.010104.x
  32. Hammerle CHF, Olah AJ, Schmid J et al. The biological effect of deproteinized bovine bone on bone neoformation on the rabbit skull. Clin Oral Implants Res 1997;8:198-207
  33. Park JW. Evaluation of deproteinized bovine bone mineral as a bone graft substitute : A comparative analysis of basic characteristics of three commercially available bone substitutes. J Korean Acad periodontol 2005;35:863-875 https://doi.org/10.5051/jkape.2005.35.4.863
  34. Park JB, Han SH, Kim KH et al. Evaluation on the bone regenerative capacity of deproteinized bovine bone-derived bone graft material(OCS-B). The Journal of the Korean Dental Association 2006;44:359-366
  35. Storgard-Jensen S, Aaboe M, Pinholt EM et al. Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants 1996;11:55-66
  36. Sogal A, Tofe AJ. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone used for dental applications. J Periodontal 1999;70:1053-1063 https://doi.org/10.1902/jop.1999.70.9.1053
  37. Brooks SPJ, Lampi BJ, Sarwar G, Botting HG. A comparison of methods for determining total body protein. Anal Biochem 1995;226:26-30 https://doi.org/10.1006/abio.1995.1186