The Effects of an Urban Renewal Plan on Detailed Air Flows in an Urban Area

도시 재개발이 도시 지역 상세 대기 흐름에 미치는 영향

  • Lee, Ju-Hyun (Dept. of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Choi, Jae-Won (Dept. of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Jae-Jin (Dept. of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Suh, Yong-Cheol (Dept. of Geoinformatic Engineering, Pukyong National University)
  • 이주현 (부경대학교 환경대기과학과) ;
  • 최재원 (부경대학교 환경대기과학과) ;
  • 김재진 (부경대학교 환경대기과학과) ;
  • 서용철 (부경대학교 위성정보과학과)
  • Received : 2009.03.06
  • Accepted : 2009.06.19
  • Published : 2009.06.30

Abstract

Using a computational fluid dynamics (CFD) model, the effects of building complexes constructed under an urban renewal plan on air flows in an urban area were investigated. For this, the geographic information system (GIS) data were used as the input data of the CFD model and four experiments were numerically simulated for different inflow directions (westerly, southerly, easterly, and northerly cases). Before constructing building complexes under the urban renewal plan, wind speed at the pedestrian level was very low around buildings because of decrease in wind speed by the drag effect of the densely distributed low-rise buildings. As the high-rise buildings were constructed and building density decreased by the urban renewal plan, wind speed at the pedestrian level increased compared to that before the urban renewal plan because the drag effect by the buildings decreases and the channeling effect satisfying the mass continuity partially appeared at the spaces among the high-rise buildings. At the upper levels, wind speed partially increased inside the high-rise buildings due to the channeling effect but it remarkably decreased across a vast extent of the downwind regions due to the generation of the recirculation zone and the drag effect of the high-rise buildings.

본 연구에서는 전산유체역학 모델을 이용하여 도시 재정비에 따른 신축 건물이 주변 대기 흐름에 미치는 영향을 조사하였다. 이를 위하여 지리정보시스템 자료로부터 추출한 건물 자료를 전산유체역학 모델의 입력 자료로 사용하였고 4가지 풍향 (서풍, 남풍, 동풍, 북풍)에 대한 수치 시뮬레이션을 수행하였다. 도시 재정비가 이루어지기 전에는 저층 건물이 밀집되었기 때문에 건물에 의한 마찰 효과가 증가하면서 건물 사이 공간의 풍속이 현저하게 감소하였다. 도시 재정비 계획에 따라 고층 건축물이 신축되고 밀집된 건물이 정비되면서 보행자 고도에서는 건물에 의한 마찰 효과가 감소하였다. 그리고 질량연속방정식을 만족시키기 위한 channeling 효과가 부분적으로 나타나면서 도시 재정비 지역의 풍속이 증가하였다. 상층에서는 고층 건물이 신축되면서 건물 사이에서 일어나는 channeling 효과에 의해 부분적으로 풍속이 증가하였다. 그러나 도시 재정비 지역의 풍하지역에서는 건물에 의해 형성되는 재순환 영역 (recirculation region)과 마찰 효과에 의해 넓은 지역에서 풍속이 현저하게 감소하였다.

Keywords

References

  1. 김재진. 2007. 장애물 외관비가 주변 흐름에 미치는 영향. 대기 17(4):381-391.
  2. 김재진, 백종진. 2005. CFD 모형을 이용한 도시지역 흐름 및 스칼라 분산 연구. 한국기상학회지 41(5):821-837.
  3. 이동현, 백태경. 2009. 저층고밀형 주택지 정비수법에 관한 연구. 한국지리정보학회지 12(1):44-45.
  4. Baik, J.-J. and J.-J. Kim. 1999. A numerical study of flow and pollutant dispersion characteristics in urban street canyons. Journal of Applied Meteorology 38(9):1576-1589. https://doi.org/10.1175/1520-0450(1999)038<1576:ANSOFA>2.0.CO;2
  5. Baik, J.-J., R.-S. Park, H.-Y. Chun and J.-J. Kim. 2000. A laboratory model of urban street-canyon flows. Journal of Applied Meteorology 39(11):1592-1600. https://doi.org/10.1175/1520-0450(2000)039<1592:ALMOUS>2.0.CO;2
  6. Baik, J.-J. and J.-J. Kim. 2002. On the escape of pollutants from urban street canyons. Atmospheric Environment 36(3):527-536. https://doi.org/10.1016/S1352-2310(01)00438-1
  7. Baik, J.-J., S.-B. Park and J.-J. Kim. 2009. Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. Journal of Applied Meteorology and Climatology (in press).
  8. DePaul, F.T. and C.M. Sheih. 1986. Measurements of wind velocities in a street canyon. Atmospheric Environment 20(3):455-459. https://doi.org/10.1016/0004-6981(86)90085-5
  9. Kim, J.-J. and J.-J. Baik. 1999. A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons. Journal of Applied Meteorology 38(9):1249-1261. https://doi.org/10.1175/1520-0450(1999)038<1249:ANSOTE>2.0.CO;2
  10. Kim, J.-J., and J.-J. Baik. 2001. Urban street-canyon flows with bottom heating. Atmospheric Environment 35(20):3395-3404. https://doi.org/10.1016/S1352-2310(01)00135-2
  11. Kim, J.-J., J.-J. Baik and H.-Y. Chun. 2001. Two-dimensional numerical modeling of flow and dispersion in the presence of hill and buildings. Journal of Wind Engineering and Industrial Aerodynamics 89(10):947-966. https://doi.org/10.1016/S0167-6105(01)00092-7
  12. Kim, J.-J., and J.-J. Baik. 2005. Physical experiments to investigate urban street-canyon flow. Advances in Atmospheric Sciences 22(2):230-237. https://doi.org/10.1007/BF02918512
  13. Lee, I. Y. and H. M. Park. 1994. Parameterization of the pollutant transport and dispersion in urban street canyons. Atmospheric Environment 28(14):2343-2349. https://doi.org/10.1016/1352-2310(94)90488-X
  14. Meroney, R.N., M. Pavageau, S. Rafailidis and M. Schatzmann. 1996. Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyon. Journal of Wind Engineering and Industrial Aerodynamics 62(1):37-56. https://doi.org/10.1016/S0167-6105(96)00057-8
  15. Nakamura, Y. and T.R. Oke. 1988. Wind, temperature, and stability conditions in an east-west oriented urban canyon. Atmospheric Environment 22(12):2691-2700. https://doi.org/10.1016/0004-6981(88)90437-4
  16. Rotach, M.W.. 1995. Profiles of turbulence statistics in and above an urban street canyon. Atmospheric Environment 29(13):1473-1486. https://doi.org/10.1016/1352-2310(95)00084-C
  17. Sini, J.-F., S. Anquetin and P.G. Mestayer. 1996. Pollutant dispersion and thermal effects in urban street canyons. Atmospheric Environment 30(15):2659-2677. https://doi.org/10.1016/1352-2310(95)00321-5
  18. Uehara, K., S. Murakami, S. Oikawa and S. Wakamatsu. 2000. Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmospheric Environment 34(10):1553-1562. https://doi.org/10.1016/S1352-2310(99)00410-0