Development of Biomimetic Scaffold for Tissue Engineering

조직공학을 위한 생체모사용 스캐폴드 개발

  • Park, Su-A (Nano-Mechanical Systems Research Division, Korea Institute of Machinery & Materials (KIMM)) ;
  • Lee, Jun-Hee (Nano-Mechanical Systems Research Division, Korea Institute of Machinery & Materials (KIMM)) ;
  • Kim, Wan-Doo (Nano-Mechanical Systems Research Division, Korea Institute of Machinery & Materials (KIMM))
  • 박수아 (한국기계연구원 나노융합기계연구본부) ;
  • 이준희 (한국기계연구원 나노융합기계연구본부) ;
  • 김완두 (한국기계연구원 나노융합기계연구본부)
  • Published : 2009.06.30

Abstract

Tissue engineering is a research field for artificial substitutes to improve or replace biological functions. Scaffolds play a important role in tissue engineering. Scaffold porosity and pore size provide adequate space, nutrient transportation and cell penetration throughout the scaffold structure. Scaffold structure is directly related to fabrication methods. This review will introduce the current technique of 3D scaffold fabrication for tissue engineering. The conventional technique for scaffold fabrication includes salt leaching, gas foaming, fiber bonding, phase seperation, melt moulding, and freeze drying. These conventional scaffold fabrication has the limitations of cell penetration and interconnectivity. In this paper, we will present the solid freeform fabrication (SFF) such as stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), and 3D printing (3DP).

조직공학은 기능을 상실한 인체를 대체하거나 복원하기 위해 인공대체품을 개발하기 위한 중요한 학문이다. 특히, 세포가 자랄 수 있는 지지체 역할을 하는 스캐폴드는 조직공학 연구를 위한 중요한 부분을 차지하고 있다. 그래서, 3차원 조직공학용 스캐폴드 개발을 위한 다양한 제조 방법을 소개하고자 하였다. 스캐폴드의 일반적인 제조방법으로는 염침출법 (solvent-casting particulate-leaching), 염 발포법 (gas foaming/salt leaching), fiber meshes/fiber bonding 법, 상분리법 (phase separation), melt moulding 법, 동결 건조법 (freeze drying)이 있으며, 넓은 표면적을 가진 스캐폴드 개발방법으로 전기방사법이 알려져 있다. 또한, 최근에는 스캐폴드 내부의 균일한 세포의 침투를 유도하기 위해 적당한 공극크기를 조절하고 우수한 공극률을 가진 스캐폴드를 개발하고자 stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), 및 3D printing (3DP) 와 같은 다양한 solid freeform fabrication (SFF) 기술이 개발되어지고 있다.

Keywords

References

  1. E. Sacholos and J. T. Czernuszka, 'Making tissue engineering scaffolds work. Review on the application of solid freeform fabrcation technology to the production of tissue engineering scaffolds', Euro. Cells Mater., 5, 29 (2003) https://doi.org/10.22203/eCM.v005a03
  2. W. E. Teo and S. Ramakrishna, 'A review on electrospinning design and nanofibre assemblies', Nanotechnology, 17, R89 (2006) https://doi.org/10.1088/0957-4484/17/14/R01
  3. S. A. Park, K. E. Park, H. Yoon, J. G. Son, T. J. Min, and G. H. Kim, 'Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication', Polym. Inter., 56, 1361 (2007) https://doi.org/10.1002/pi.2345
  4. S. J. Hollister, 'Porous scaffold design for tissue engineering', Nature Mater., 4, 518 (2005) https://doi.org/10.1038/nmat1421
  5. X. Wang, Y. Yan, and R. Zhang, 'Raid prototyping as a tool for manufacturing bioartificial livers', TRENDS in Biotech., 25, 505 (2007) https://doi.org/10.1016/j.tibtech.2007.08.010
  6. N.E. Fedorovich, J. Dewijn, A.J. Verbout, J. Alblas, and W. J. A. Dhert, 'Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing', Tissue Eng., 14, 127 (2008) https://doi.org/10.1089/ten.2007.0158