패킷 지연 보장을 위한 LTE 시스템의 호 수락 제어 알고리즘

A Call Admission Control Algorithm in 3GPP LTE System for Guarantee of Packet Delay

  • 발행 : 2009.06.30

초록

LTE(Long Term Evolution)는 3GPP(Third Generation Partnership Project)에서 표준화 작업을 진행 중인 차세대 이동통신 기술이다. LTE에서는 기존의 이동통신망이 회선 교환 네트워크를 통해 음성 트래픽을 전달하는 것과는 달리 IP 기반의 패킷 교환 네트워크를 통해 모든 종류의 트래픽을 전달하기 때문에 다양한 서비스에 대한 QoS(Quality of Service) 보장이 어렵다. LTE 시스템에서 사용자의 QoS를 제공하기 위해서 RRM(Radio Resource Management)이 매우 중요하며, 특히 RRM의 한 부분인 호 수락 제어 기능은 기존에 수락된 호들의 QoS를 유지하고 네트워크 혼잡 상황을 방지하는 중요한 역할을 수행한다. 본 논문에서는 LTE 시스템에서 제공하는 다양한 서비스들의 QoS를 보장하기 위한 호 수락 제어 알고리즘을 제안하고 모의실험을 통하여 성능 평가를 수행한다. 제안하는 알고리즘은 채널 및 네트워크의 상황을 반영하여 요청 호의 일부를 거절함으로써 과도한 호로 인한 네트워크 혼잡 상황을 방지함과 동시에 사용자의 QoS를 만족시킬 수 있다. 특히 제안한 호 수락 제어 알고리즘은 각 서비스 종류에 대하여 LTE 표준에서 요구하고 있는 최대 허용 패킷 지연을 만족시킬 수 있다.

Long Tenn Evolution (LTE) is the next generation mobile phone technology which has being standardized by the Third Generation Partnership Project (3GPP). In the existing mobile communication networks, voice traffic is delivered through circuit switched networks. In LTE, however, all kinds of traffic are transferred through IP based packet switched networks which has best-effort characteristic. Therefore, providing QoS in LTE system is difficult. In order to provide QoS in LTE, RRM is very important. Especially, in part of RRM, call admission control (CAC) performs an important function to reduce network congestion and guarantee a certain level of QoS for on-going calls. In this paper, we propose a CAC algorithm in order to provide QoS for various kinds of services in LTE system. The performance of the proposed algorithm is evaluated with various simulation environments. The results show that the proposed algorithm provides QoS through rejections of requested calls. Especially, the proposed CAC algorithm can be satisfied with packet delay requirement defined in LTE specification.

키워드

참고문헌

  1. 3GPP TS 36.300 v.8.3.0, 'Evolved UTRA and Evolved UTRAN (E-UTRAN); Overall description,' Nov., 2007
  2. White paper, 'UMTS Evolution from 3GPP Release 7 to Release 8 HSPA and SAE/LTE,' 3G Americas, Dec., 2007
  3. Y. Fang, and Y. Zhang, 'Call Admission Control Schemes and Performance Analysis in Wireless Mobile Networks,' IEEE Trans. Veh. Technol., Vol.51, No.2, pp.371-382, March, 2002 https://doi.org/10.1109/25.994812
  4. L. Huang, S. Kumar, and C.-C. J. Kuo, 'Adaptive Resource Allocation for Multimedia QoS Management in Wireless Networks,' IEEE Trans. Veh. Technol., Vol.53, No.2, pp.547-558, March, 2004 https://doi.org/10.1109/TVT.2003.823290
  5. D. Hong and S. S. Rappaport, 'Traffic Model and Performance Analysis for Cellular Mobile RadioTelephone Systems with Prioritized and Nonprioritized Handoff Procedures,' IEEE Trans. Veh. Technol., Vol.35, No.3, pp.77-92, Aug., 1986 https://doi.org/10.1109/T-VT.1986.24076
  6. R. Ramjee, R. Nagarajan, and D. Towsley, 'On Optimal Call Admission Control in Cellular Networks,' IEEE/ACM Wireless Networks, Vol.3, pp.29-41, March, 1997 https://doi.org/10.1023/A:1019172226345
  7. R. Guerin, 'Queueing-Block System with Two Arrivals Streams and Guard Channels,' IEEE Trans. Commun., Vol.36, No.2, pp.153-163, Feb., 1988 https://doi.org/10.1109/26.2745
  8. D. McMillan, 'Delay Analysis of a Cellular Mobile Priority Queueing System,' IEEE/ACM Trans. Networking, Vol.3, No.3, pp.310-319, June, 1995 https://doi.org/10.1109/90.392390
  9. T. Zhang, E. Berg, J. Chennikara, P. Agrawel, J.-C. Chen, and T. Kodama, 'Local Predictive Resource Reservation for Handoff in Multimedia Wireless IP Networks,' IEEE J. on Sel. Areas Commun., Vol.19, No.10, pp.1931-1941, Oct., 2001 https://doi.org/10.1109/49.957308
  10. M. Naghshineh and M. Schwartz, 'Distributed Call Admission Control in Mobile/Wireless Networks,' IEEE J. on Sel. Areas Commun., Vol.14, No.4, pp.711-717, May, 1996 https://doi.org/10.1109/49.490422
  11. D. A. Levine, I. F. Akyildiz, and M. Naghshineh, 'A Resource Estimation and Call Admission Algorithm for Wireless Multimedia Networks Using the Shadow Cluster Concept,' IEEE/ACM Trans. Networking, Vol.5, No.1, pp.1-12, Feb., 1997 https://doi.org/10.1109/90.554717
  12. C. Qin, G. Yu, Z. Zhang, H. Jia, and A. Huang, 'Power Reservation-based Admission Control Scheme for IEEE 802.16e OFDMA Systems,' Proc. of IEEE WCNC, pp.1831-1835, March, 2007
  13. S. Ryu, B.-H. Ryu, H. Seo, M. Shin, and S. Park, 'Wireless Packet Scheduling Algorithm for OFDMA System Based on Time-Utility and Channel State,' ETRI Journal, Vol.27, No.6, pp.777-787, Dec., 2005 https://doi.org/10.4218/etrij.05.1005.0001
  14. A. Jalali, R. Padovani, and R. Pankaj, 'Data Throughput of CDMA-HDR a High Efficiency-High Data Rate Personal Communication Wireless System,' Proc. of VTC2000-spring, pp.1854-1858, July, 2000
  15. WiMAX Forum, 'WiMAX System Evaluation Methodology,' v2.01, Dec., 2007
  16. White paper, 'Next Generation Mobile Networks Radio Access Performance Evaluation Methodology,' Next Generation Mobile Networks (NGMN), v1.2, June, 2007
  17. 3GPP TS 22.105 v8.4.0, 'Services and service capacities,' June, 2007
  18. Application Traffic Model draft, Contributed to AWG
  19. 3GPP TS 23.203 v8.2.0, 'Policy and charging control architecture,' June, 2008
  20. ITU-T Recommendation G.1010, 'End-user multimedia QoS categories,' Nov., 2001