Characterization of Umbilical Cord-derived Stem Cells during Expansion in Vitro

탯줄유래 줄기세포의 계대배양에 따른 특성 변화의 분석

  • Park, Se-Ah (Department of Biotechnology, College of Natural Science, Seoul Women's University) ;
  • Kang, Hyun-Mi (Department of Biotechnology, College of Natural Science, Seoul Women's University) ;
  • Heo, Jin-Yeong (Department of Biotechnology, College of Natural Science, Seoul Women's University) ;
  • Yoon, Jin-Ah (Department of Biotechnology, College of Natural Science, Seoul Women's University) ;
  • Kim, Hae-Kwon (Department of Biotechnology, College of Natural Science, Seoul Women's University)
  • 박세아 (서울여자대학교 자연과학대학 생명공학과) ;
  • 강현미 (서울여자대학교 자연과학대학 생명공학과) ;
  • 허진영 (서울여자대학교 자연과학대학 생명공학과) ;
  • 윤진아 (서울여자대학교 자연과학대학 생명공학과) ;
  • 김해권 (서울여자대학교 자연과학대학 생명공학과)
  • Published : 2009.03.31

Abstract

Objectives: Mesenchymal stem cells (MSC) comprise a promising tool for cellular therapy. It is known that long-term in vitro culture of human bone marrow and adipose tissue derived-MSCs lead to a reduction of life span and a change of stem-like characters. The aim of our study was to examine whether stem cell properties of human umbilical cord-derived stem cells (HUC) could be affected by in vitro expansion. Methods: HUC were isolated from human umbilical cord and cultured for 10 passages in vitro. Morphology and population doubling time (PDT) were investigated, and changes of stem cell properties were examined using RT-PCR and immunocytochemistry during serial subcultures. Results: Morphology and PDT of HUC began to change slightly from the 7th passage (p7). Expression level of nestin and vimentin mRNAs increased along with the culture period from p4 until p10. In contrast, expression level of SCF mRNA decreased during the same culture period. Expression level of Oct-4 and HNF-4${\alpha}$ mRNAs was not significantly changed throughout the culture period until p10. Expression level of BMP-4, FGF-5, NCAM and HLA-ABC mRNAs appeared to increase as the culture continued, however, the difference was not significant. Immunocytochemical studies showed that HUC at p3, p6 and p9 positively were stained with antibodies against SSEA-3 and SSEA-4 proteins. Interestingly, staining intensity of HUC for ICAM-1 and HLA-ABC gradually increased throughout the culture period. Intensity against thy-1 and fibronectin antibodies increased at p9 while that against TRA-1-60 and VCAM-1 antibodies began to decrease at p6 until p9. Conclusions: These results suggest that HUC change some of their stem cell characteristics during in vitro culture. Development of culture system might be needed for the maintenance of characteristics.

목 적: 중간엽 줄기세포를 임상에 적용하기 위해서는 체외 배양을 통한 세포증식 과정이 필요하나, 오랜 기간 동안 체외 배양을 하게 되면 노화되어 특성이 변하고 분화 능력 또한 감소하게 된다. 따라서 현재까지는 초기 계대배양의 세포만이 임상에 적용되고 있는 실정이며 체외에서의 세포 배양이 세포의 특성에 미치는 영향에 대한 연구와 함께 세포의 특성 변화 없이 체외증식이 가능하도록 하는 연구들이 골수 및 지방유래 중간엽 줄기세포에서 보고되고 있다. 그러나 현재 탯줄유래 줄기세포의 체외 배양에 따른 특성 변화 분석 연구는 아직 잘 이루어지지 않고 있다. 본 연구의 목적은 탯줄유래 줄기세포의 체외 배양 시 계대배양 증가에 따른 줄기세포의 특성 변화를 분석하고자 하였다. 연구방법: 사람의 탯줄유래 줄기세포 (human umbilical cord-derived stem cells, HUC)를 분리하여 in vitro에서 계대배양하였다. 계대배양에 따른 세포의 형태와 population doubling time (PDT)을 조사하고 RT-PCR 방법을 이용하여 mRNA 분석을 하였으며 면역세포화학 염색법을 이용하여 단백질 발현을 분석하였다. 결 과: 탯줄유래 줄기세포는 평균 10번의 계대배양 후 senescence를 나타냈다. 세포의 형태는 7번째 계대배양 이후 세포질이 넓어지고 세포의 크기가 커지는 변화를 나타냈으며 PDT가 증가하기 시작하였다. 계대배양 4, 8, 10번째 시기의 세포의 mRNA 변화를 분석한 결과 Oct-4, HNF-4${\alpha}$, mRNA는 10번째 계대배양까지 지속적으로 발현하였으나 nestin, vimentin mRNA는 지속적으로 발현이 감소하였고 SCF mRNA는 지속적으로 발현이 감소하였다. 이에 반해 HLA-DR${\alpha}$, Pax-6, BMP-2 mRNA는 모든 계대배양 시기의 세포에서 발현되지 않았다. 면역세포화학 분석법을 통한 3, 6, 9번째 계대배양 세포의 단백질 발현 분석 결과 SSEA-3와 SSEA-4는 3, 6, 9번째 계대배양 세포 모두에서 발현하였으나 ICAM-1과 HLA-ABC는 계대배양이 증가함에 따라 발현이 증가되었다. Thy-1 단백질은 p9에서 발현이 증가되었으며 이와 반대로 TRA-1-60와 VCAM-1 단백질은 p6과 p9 시기에 발현이 감소되었다. HLA-DR 단백질은 모든 계대배양 시기에 발현되지 않았다. 결 론: 본 연구결과 탯줄유래 줄기세포는 체외 배양 시 줄기세포 특성이 일부 변하는 것을 관찰하였다. 앞으로 줄기세포의 특성을 유지할 수 있는 체외 배양법의 발달을 위한 연구들이 수행 되야 할 것으로 사료된다.

Keywords

References

  1. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 27: 71-4 https://doi.org/10.1126/science.27.680.71
  2. Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med 2004; 229: 623-31 https://doi.org/10.1177/153537020422900706
  3. Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004; 40: 1275-84 https://doi.org/10.1002/hep.20469
  4. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61: 364-70 https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  5. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211: 27-35 https://doi.org/10.1002/jcp.20959
  6. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 2007; 167: 989-97 https://doi.org/10.1001/archinte.167.10.989
  7. Bolland BJ, Tilley S, New AM, Dunlop DG, Oreffo RO. Adult mesenchymal stem cells and impaction grafting: a new clinical paradigm shift. Expert Rev Med Devices 2007; 4: 393-404 https://doi.org/10.1586/17434440.4.3.393
  8. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33: 919-26 https://doi.org/10.1016/j.bone.2003.07.005
  9. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 2004; 22: 675-82 https://doi.org/10.1634/stemcells.22-5-675
  10. Zuk PA, ZhuM, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279-95 https://doi.org/10.1091/mbc.E02-02-0105
  11. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21: 105-10 https://doi.org/10.1634/stemcells.21-1-105
  12. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 2004; 225: 649-58
  13. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE 2008; 3: e2213 https://doi.org/10.1371/journal.pone.0002213
  14. Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun 2007; 359: 108-14 https://doi.org/10.1016/j.bbrc.2007.05.067
  15. Lu FZ, Fujino M, Kitazawa Y, Uyama T, Hara Y, Funeshima N, et al. Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood. J Lab Clin Med 2005; 146: 271-8 https://doi.org/10.1016/j.lab.2005.07.003
  16. Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 2003; 24: 1167-76 https://doi.org/10.1093/carcin/bgg085
  17. Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P. Stromal differentiation and architecture of the human umbilical cord. Placenta 1997; 18: 53-64 https://doi.org/10.1016/S0143-4004(97)90071-0
  18. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 2007; 25:319-31 https://doi.org/10.1634/stemcells.2006-0286
  19. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; 91: 1017-26
  20. Fu YS, Shih YT, Cheng YC, Min MY. Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci 2004; 11: 652-60 https://doi.org/10.1007/BF02256131
  21. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 2004; 22: 1330-7 https://doi.org/10.1634/stemcells.2004-0013
  22. Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004; 22: 625-34 https://doi.org/10.1634/stemcells.22-4-625
  23. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24:1294-301 https://doi.org/10.1634/stemcells.2005-0342
  24. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multi lineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25: 1384-92 https://doi.org/10.1634/stemcells.2006-0709
  25. Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauvé Y, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 2007; 25: 602-11 https://doi.org/10.1634/stemcells.2006-0308
  26. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells:preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 2006; 24: 781-92 https://doi.org/10.1634/stemcells.2005-0330
  27. Carlin R, Davis D, Weiss M, Schultz B, Troyer D. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 2006; 6: 4-8
  28. Seah Park, Hyeon Mi Kang, Eun Su Kim, Jinyoung Kim, Haekwon Kim. Characterization analysis for cardiogenic potential of three human adult stem cells. Dev Reprod 2007; 11: 1167-177
  29. Seah Park, Hyeon Mi Kang, Eun Su Kim, Jinyoung Kim, Haekwon Kim. Cardiomyogenic potential of human adipose tissue and umbilical cord derived-mesenchymal like stem cells. The Korean Journal of Reproductive Medicine 2007; 34: 239-252
  30. Kim J, Kang HM, Kim H, Kim MR, Kwon HC, Gye MC, et al. Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells 2007; 9: 581-94 https://doi.org/10.1089/clo.2007.0027
  31. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, selfrenewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64: 278-94 https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
  32. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999; 107: 275-81 https://doi.org/10.1046/j.1365-2141.1999.01715.x
  33. Izadpanah R, Kaushal D, Kriedt C, Tsien F, Patel B, Dufour J, et al. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res 2008; 68: 4229-38 https://doi.org/10.1158/0008-5472.CAN-07-5272
  34. Ryu E, Hong S, Kang J, Woo J, Park J, Lee J, et al. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2008; 371: 431-6 https://doi.org/10.1016/j.bbrc.2008.04.111
  35. Sun HJ, Bahk YY, Choi YR, Shim JH, Han SH, Lee JW. A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res 2006; 24: 2059-71 https://doi.org/10.1002/jor.20273
  36. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol 2006; 10: 7-14
  37. Noer A, Boquest AC, Collas P. Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol 2007; 8: 18 https://doi.org/10.1186/1471-2121-8-18
  38. Wall ME, Bernacki SH, Loboa EG. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng 2007; 13: 1291-8 https://doi.org/10.1089/ten.2006.0275
  39. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells:preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 2006; 24:781-92 https://doi.org/10.1634/stemcells.2005-0330