References
- Atanackovic, T.M. and Glavardanov, V.B. (2002), "Buckling of a twisted and compressed rod", Int. J. Solid Struct., 39(11), 2987-2999 https://doi.org/10.1016/S0020-7683(02)00235-4
- Balaeff, A., Mahadevan, L. and Schulten, K. (2006), "Modeling DNA loops using the theory of elasticity", Phys. Rev. E, 73(3), 031919(23) https://doi.org/10.1103/PhysRevE.73.031919
- Benecke, S. and Vuuren, J.H.V. (2005), "Modelling torsion in an elastic cable in space", Appl. Math. Model., 29(2), 117-136 https://doi.org/10.1016/j.apm.2004.07.009
- Chucheepsakul, S. Buncharoen, S. and Huang, T. (1995), "Elastica of simple variable-arc-length beam subjected to end moment", J. Eng. Mech., ASCE, 121(7), 767-772 https://doi.org/10.1061/(ASCE)0733-9399(1995)121:7(767)
- Chucheepsakul, S. and Huang, T. (1992), "Finite element solution of large deflection analysis of a class of beam", Proc. Comput. Meth. Eng., 1, 45-50
- Chucheepsakul, S. and Huang, T. (1997), "Finite-element solution of variable-arc-length beams under a point load", J. Eng. Mech., ASCE, 123(7), 968-970 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(968)
- Chucheepsakul, S. and Monprapussorn, T. (2000), "Divergence instability of variable-arc-length elastica pipes transporting fluid", J. Fluids Struct., 14(6),895-916 https://doi.org/10.1006/jfls.2000.0301
- Chucheepsakul, S. and Monprapussorn, T. (2001), "Nonlinear buckling of marine elastica pipes transporting fluid", Int. J. Struct. Stabil. Dyn., 1(3), 333-365 https://doi.org/10.1142/S0219455401000263
- Chucheepsakul, S. and Phungpaigram, B. (2004), "Elliptic integral solutions of variable-arc-length elastica under an inclined follower force", Z. Angew Math. Mach. (ZAMM), 84(1), 29-38 https://doi.org/10.1002/zamm.200410076
- Chucheepsakul, S., Thepphitak, G. and Wang, C.M. (1996), "Large deflection of simple variable-arc-length beam subjected to a point load", Struct. Eng. Mech., 4(1), 49-59 https://doi.org/10.12989/sem.1996.4.1.049
- Chucheepsakul, S., Thepphitak, G. and Wang, C.M. (1997), "Exact solutions of variable-arc-length elastica under moment gradient", Struct. Eng. Mech., 5(5), 529-539 https://doi.org/10.12989/sem.1997.5.5.529
- Chucheepsakul, S., Wang, C.M., He, X.Q. and Monprapussorn, T. (1999), "Double curvature bending of variable-arc-length elasticas", J. Appl. Mech., ASME, 66(1), 87-94 https://doi.org/10.1115/1.2789173
-
Clebsch, A. (1862), Theorie der Elastict
$\ddot{a}$ t Fester K$\ddot{o}$ rper, B.G. Teubner, Leipzig - Coleman, B.D. and Swigon, D. (2000), "Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids", J. Elasticity, 60(3), 173-221 https://doi.org/10.1023/A:1010911113919
- Coleman, B.D., Tobias, I. and Swigon, D. (1995), "Theory of the influence of the end conditions on self-contact in DNA loops", J. Chem. Phys., 103(20), 9101-9109 https://doi.org/10.1063/1.470021
- Cosserat, E. and Cosserat, F. (1907), "Sur la statique de la ligne déformable", C.R. Acad. Sci. Paris, 145, 1409-1412
- Coyne, J. (1990), "Analysis of the formation and elimination of loops in twisted cable", IEEE J. Oceanic Eng., 15(2), 72-83 https://doi.org/10.1109/48.50692
- Goyal, S., Perkins, N.C. and Lee, C.L. (2005), "Nonlinear dynamics and loop formation in kirchhoff rods with implications to the mechanics of DNA and cables", J. Comput. Phys., 209(1), 371-389 https://doi.org/10.1016/j.jcp.2005.03.027
- He, X.Q., Wang, C.M. and Lam, K.Y. (1997), "Analytical bending solutions of elastica with one end held while the other end portion slides on the friction support", Arch. Appl. Mech., 67(8), 543-554 https://doi.org/10.1007/s004190050138
- Katopodes, F.V., Barber, J.R. and Shan, Y. (2001), "Torsional deformation of an endoscope probe", P. Roy. Soc. London, 457(2014), 2491-2506 https://doi.org/10.1098/rspa.2001.0836
-
Kirchhoff, G. (1859), "
$\ddot{U}$ ber das gleichgewicht und die bewegung eines unendlich dünnen elastichen stabes", J. F. Reine. Angew. Math. (Crelle), 56, 285-313 https://doi.org/10.1515/crll.1859.56.285 - Love, A.E.H. (1892), A Treatise on the Mathematical Theory of Elasticity, First Edition, Cambridge University Press
- Lu, C.L. and Perkins, N.C. (1994), "Nonlinear spatial equilibria and stability of cables under uni-axial torque and thrust", J. Appl. Mech., ASME, 61(4), 879-886 https://doi.org/10.1115/1.2901571
- Lu, C.L. and Perkins, N.C. (1995), "Complex spatial equilibria of U-joint supported cables under torque, thrust and self-weight", Int. J. Non-linear Mech., 30(3), 271-285 https://doi.org/10.1016/0020-7462(95)00001-5
- Maddocks, J.H. (1987), "Stability and folds", Arch. Ration. Mech. Anal., 99(4), 301-327 https://doi.org/10.1007/BF00282049
- Miyazaki, Y. and Kondo, K. (1997), "Analytical solution of spatial elastica and its application to kinking problem", Int. J. Solids Struct., 34(27), 3619-3636 https://doi.org/10.1016/S0020-7683(96)00223-5
- Nikravesh, P.E. (1988), Computer-Aided Analysis of Mechanical Systems, Prentice Hall, New Jersey
- Pulngern, T., Halling, M.W. and Chucheepsakul, S. (2005), "Large deflections of variable-ARC-length beams under uniform self weight: Analytical and experimental", Struct. Eng. Mech., 19(4), 413-423
- van der Heijden, G.H.M., Neukirch, S. and Thompson, J.M.T. (2003), "Instability and self-contact phenomena in the writhing of clamped rods", Int. J. Mech. Sci., 45(1), 161-196 https://doi.org/10.1016/S0020-7403(02)00183-2
- van der Heijden, G.H.M. and Thompson, J.M.T. (2000), "Helical and localised buckling in twisted rods: A unified analysis of the symmetric case", Nonlinear Dyn., 21(1), 71-99 https://doi.org/10.1023/A:1008310425967
- Wang, C.M., Lam, K.Y. and He, X.Q. (1998), "Instability of variable arc-length elastica under follower force", Mech. Res. Commun., 25(2), 189-194 https://doi.org/10.1016/S0093-6413(98)00024-X
- Wang, C.M., Lam, K.Y., He, X.Q. and Chucheepsakul, S. (1997), "Large deflections of an end supported beam subjected to a point load", Int. J. Nonlinear Mech., 32(1), 63-72 https://doi.org/10.1016/S0020-7462(96)00017-0
- Zhang, X. and Yang, J. (2005), "Inverse problem of elastica of variable-arc-length beam subjected to a concentrated load", Acta Mech. Sinica, 21(5), 444-450 https://doi.org/10.1007/s10409-005-0062-6
Cited by
- Deformation and vibration of a spatial elastica with fixed end slopes vol.50, pp.5, 2013, https://doi.org/10.1016/j.ijsolstr.2012.11.011
- Snap-Through Phenomenon and Self-Contact of Spatial Elastica Subjected to Mid-Torque vol.07, pp.04, 2015, https://doi.org/10.1142/S175882511550057X
- Experiment and theory on a twisted ring under quasi-static loading vol.95, 2017, https://doi.org/10.1016/j.ijnonlinmec.2017.07.005
- Deformation and vibration of a spatial clamped elastica with noncircular cross section vol.47, 2014, https://doi.org/10.1016/j.euromechsol.2014.04.002
- Postbuckling behavior of variable-arc-length elastica connected with a rotational spring joint including the effect of configurational force vol.53, pp.10, 2018, https://doi.org/10.1007/s11012-018-0847-x
- Analytical modeling and simulation of a multifunctional segmented lithium ion battery unimorph actuator vol.30, pp.1, 2009, https://doi.org/10.1088/1361-665x/abc7fb