DOI QR코드

DOI QR Code

Large deflections of spatial variable-arc-length elastica under terminal forces

  • Phungpaingam, Boonchai (Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi) ;
  • Athisakul, Chainarong (Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi) ;
  • Chucheepsakul, Somchai (Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi)
  • Received : 2007.11.12
  • Accepted : 2009.05.14
  • Published : 2009.07.10

Abstract

This paper aims to study the large deflections of variable-arc-length elastica subjected to the terminal forces (e.g., axial force and torque). Based on Kirchhoff's rod theory and with help of Euler parameters, the set of nonlinear governing differential equations which free from the effect of singularity are established together with boundary conditions. The system of nonlinear differential equations is solved by using the shooting method with high accuracy integrator, seventh-eighth order Runge-Kutta with adaptive step-size scheme. The error norm of end conditions is minimized within the prescribed tolerance ($10^{-5}$). The behavior of VAL elastica is studied by two processes. One is obtained by applying slackening first. After that keeping the slackening as a constant and then the twist angle is varied in subsequent order. The other process is performed by reversing the sequence of loading in the first process. The results are interpreted by observing the load-deflection diagram and the stability properties are predicted via fold rule. From the results, there are many interesting aspects such as snap-through phenomenon, secondary bifurcation point, loop formation, equilibrium configurations and effect of variable-arc-length to behavior of elastica.

Keywords

References

  1. Atanackovic, T.M. and Glavardanov, V.B. (2002), "Buckling of a twisted and compressed rod", Int. J. Solid Struct., 39(11), 2987-2999 https://doi.org/10.1016/S0020-7683(02)00235-4
  2. Balaeff, A., Mahadevan, L. and Schulten, K. (2006), "Modeling DNA loops using the theory of elasticity", Phys. Rev. E, 73(3), 031919(23) https://doi.org/10.1103/PhysRevE.73.031919
  3. Benecke, S. and Vuuren, J.H.V. (2005), "Modelling torsion in an elastic cable in space", Appl. Math. Model., 29(2), 117-136 https://doi.org/10.1016/j.apm.2004.07.009
  4. Chucheepsakul, S. Buncharoen, S. and Huang, T. (1995), "Elastica of simple variable-arc-length beam subjected to end moment", J. Eng. Mech., ASCE, 121(7), 767-772 https://doi.org/10.1061/(ASCE)0733-9399(1995)121:7(767)
  5. Chucheepsakul, S. and Huang, T. (1992), "Finite element solution of large deflection analysis of a class of beam", Proc. Comput. Meth. Eng., 1, 45-50
  6. Chucheepsakul, S. and Huang, T. (1997), "Finite-element solution of variable-arc-length beams under a point load", J. Eng. Mech., ASCE, 123(7), 968-970 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(968)
  7. Chucheepsakul, S. and Monprapussorn, T. (2000), "Divergence instability of variable-arc-length elastica pipes transporting fluid", J. Fluids Struct., 14(6),895-916 https://doi.org/10.1006/jfls.2000.0301
  8. Chucheepsakul, S. and Monprapussorn, T. (2001), "Nonlinear buckling of marine elastica pipes transporting fluid", Int. J. Struct. Stabil. Dyn., 1(3), 333-365 https://doi.org/10.1142/S0219455401000263
  9. Chucheepsakul, S. and Phungpaigram, B. (2004), "Elliptic integral solutions of variable-arc-length elastica under an inclined follower force", Z. Angew Math. Mach. (ZAMM), 84(1), 29-38 https://doi.org/10.1002/zamm.200410076
  10. Chucheepsakul, S., Thepphitak, G. and Wang, C.M. (1996), "Large deflection of simple variable-arc-length beam subjected to a point load", Struct. Eng. Mech., 4(1), 49-59 https://doi.org/10.12989/sem.1996.4.1.049
  11. Chucheepsakul, S., Thepphitak, G. and Wang, C.M. (1997), "Exact solutions of variable-arc-length elastica under moment gradient", Struct. Eng. Mech., 5(5), 529-539 https://doi.org/10.12989/sem.1997.5.5.529
  12. Chucheepsakul, S., Wang, C.M., He, X.Q. and Monprapussorn, T. (1999), "Double curvature bending of variable-arc-length elasticas", J. Appl. Mech., ASME, 66(1), 87-94 https://doi.org/10.1115/1.2789173
  13. Clebsch, A. (1862), Theorie der Elastict$\ddot{a}$t Fester K$\ddot{o}$rper, B.G. Teubner, Leipzig
  14. Coleman, B.D. and Swigon, D. (2000), "Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids", J. Elasticity, 60(3), 173-221 https://doi.org/10.1023/A:1010911113919
  15. Coleman, B.D., Tobias, I. and Swigon, D. (1995), "Theory of the influence of the end conditions on self-contact in DNA loops", J. Chem. Phys., 103(20), 9101-9109 https://doi.org/10.1063/1.470021
  16. Cosserat, E. and Cosserat, F. (1907), "Sur la statique de la ligne déformable", C.R. Acad. Sci. Paris, 145, 1409-1412
  17. Coyne, J. (1990), "Analysis of the formation and elimination of loops in twisted cable", IEEE J. Oceanic Eng., 15(2), 72-83 https://doi.org/10.1109/48.50692
  18. Goyal, S., Perkins, N.C. and Lee, C.L. (2005), "Nonlinear dynamics and loop formation in kirchhoff rods with implications to the mechanics of DNA and cables", J. Comput. Phys., 209(1), 371-389 https://doi.org/10.1016/j.jcp.2005.03.027
  19. He, X.Q., Wang, C.M. and Lam, K.Y. (1997), "Analytical bending solutions of elastica with one end held while the other end portion slides on the friction support", Arch. Appl. Mech., 67(8), 543-554 https://doi.org/10.1007/s004190050138
  20. Katopodes, F.V., Barber, J.R. and Shan, Y. (2001), "Torsional deformation of an endoscope probe", P. Roy. Soc. London, 457(2014), 2491-2506 https://doi.org/10.1098/rspa.2001.0836
  21. Kirchhoff, G. (1859), "$\ddot{U}$ber das gleichgewicht und die bewegung eines unendlich dünnen elastichen stabes", J. F. Reine. Angew. Math. (Crelle), 56, 285-313 https://doi.org/10.1515/crll.1859.56.285
  22. Love, A.E.H. (1892), A Treatise on the Mathematical Theory of Elasticity, First Edition, Cambridge University Press
  23. Lu, C.L. and Perkins, N.C. (1994), "Nonlinear spatial equilibria and stability of cables under uni-axial torque and thrust", J. Appl. Mech., ASME, 61(4), 879-886 https://doi.org/10.1115/1.2901571
  24. Lu, C.L. and Perkins, N.C. (1995), "Complex spatial equilibria of U-joint supported cables under torque, thrust and self-weight", Int. J. Non-linear Mech., 30(3), 271-285 https://doi.org/10.1016/0020-7462(95)00001-5
  25. Maddocks, J.H. (1987), "Stability and folds", Arch. Ration. Mech. Anal., 99(4), 301-327 https://doi.org/10.1007/BF00282049
  26. Miyazaki, Y. and Kondo, K. (1997), "Analytical solution of spatial elastica and its application to kinking problem", Int. J. Solids Struct., 34(27), 3619-3636 https://doi.org/10.1016/S0020-7683(96)00223-5
  27. Nikravesh, P.E. (1988), Computer-Aided Analysis of Mechanical Systems, Prentice Hall, New Jersey
  28. Pulngern, T., Halling, M.W. and Chucheepsakul, S. (2005), "Large deflections of variable-ARC-length beams under uniform self weight: Analytical and experimental", Struct. Eng. Mech., 19(4), 413-423
  29. van der Heijden, G.H.M., Neukirch, S. and Thompson, J.M.T. (2003), "Instability and self-contact phenomena in the writhing of clamped rods", Int. J. Mech. Sci., 45(1), 161-196 https://doi.org/10.1016/S0020-7403(02)00183-2
  30. van der Heijden, G.H.M. and Thompson, J.M.T. (2000), "Helical and localised buckling in twisted rods: A unified analysis of the symmetric case", Nonlinear Dyn., 21(1), 71-99 https://doi.org/10.1023/A:1008310425967
  31. Wang, C.M., Lam, K.Y. and He, X.Q. (1998), "Instability of variable arc-length elastica under follower force", Mech. Res. Commun., 25(2), 189-194 https://doi.org/10.1016/S0093-6413(98)00024-X
  32. Wang, C.M., Lam, K.Y., He, X.Q. and Chucheepsakul, S. (1997), "Large deflections of an end supported beam subjected to a point load", Int. J. Nonlinear Mech., 32(1), 63-72 https://doi.org/10.1016/S0020-7462(96)00017-0
  33. Zhang, X. and Yang, J. (2005), "Inverse problem of elastica of variable-arc-length beam subjected to a concentrated load", Acta Mech. Sinica, 21(5), 444-450 https://doi.org/10.1007/s10409-005-0062-6

Cited by

  1. Deformation and vibration of a spatial elastica with fixed end slopes vol.50, pp.5, 2013, https://doi.org/10.1016/j.ijsolstr.2012.11.011
  2. Snap-Through Phenomenon and Self-Contact of Spatial Elastica Subjected to Mid-Torque vol.07, pp.04, 2015, https://doi.org/10.1142/S175882511550057X
  3. Experiment and theory on a twisted ring under quasi-static loading vol.95, 2017, https://doi.org/10.1016/j.ijnonlinmec.2017.07.005
  4. Deformation and vibration of a spatial clamped elastica with noncircular cross section vol.47, 2014, https://doi.org/10.1016/j.euromechsol.2014.04.002
  5. Postbuckling behavior of variable-arc-length elastica connected with a rotational spring joint including the effect of configurational force vol.53, pp.10, 2018, https://doi.org/10.1007/s11012-018-0847-x
  6. Analytical modeling and simulation of a multifunctional segmented lithium ion battery unimorph actuator vol.30, pp.1, 2009, https://doi.org/10.1088/1361-665x/abc7fb