• Title/Summary/Keyword: variable-arc-length elastica

Search Result 6, Processing Time 0.015 seconds

Large deflections of spatial variable-arc-length elastica under terminal forces

  • Phungpaingam, Boonchai;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.501-516
    • /
    • 2009
  • This paper aims to study the large deflections of variable-arc-length elastica subjected to the terminal forces (e.g., axial force and torque). Based on Kirchhoff's rod theory and with help of Euler parameters, the set of nonlinear governing differential equations which free from the effect of singularity are established together with boundary conditions. The system of nonlinear differential equations is solved by using the shooting method with high accuracy integrator, seventh-eighth order Runge-Kutta with adaptive step-size scheme. The error norm of end conditions is minimized within the prescribed tolerance ($10^{-5}$). The behavior of VAL elastica is studied by two processes. One is obtained by applying slackening first. After that keeping the slackening as a constant and then the twist angle is varied in subsequent order. The other process is performed by reversing the sequence of loading in the first process. The results are interpreted by observing the load-deflection diagram and the stability properties are predicted via fold rule. From the results, there are many interesting aspects such as snap-through phenomenon, secondary bifurcation point, loop formation, equilibrium configurations and effect of variable-arc-length to behavior of elastica.

Exact solutions of variable-arc-length elasticas under moment gradient

  • Chucheepsakul, Somchai;Thepphitak, Geeraphong;Wang, Chien Ming
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.529-539
    • /
    • 1997
  • This paper deals with the bending problem of a variable-are-length elastica under moment gradient. The variable are-length arises from the fact that one end of the elastica is hinged while the other end portion is allowed to slide on a frictionless support that is fixed at a given horizontal distance from the hinged end. Based on the elastica theory, exact closed-form solution in the form of elliptic integrals are derived. The bending results show that there exists a maximum or a critical moment for given moment gradient parameters; whereby if the applied moment is less than this critical value, two equilibrium configurations are possible. One of them is stable while the other is unstable because a small disturbance will lead to beam motion.

Elastica of Simple Variable-Arc-Length Beams (단순지지 변화곡선 길이 보의 정확탄성곡선)

  • 이병구;박성근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.177-184
    • /
    • 1997
  • In this paper, numerical methods are developed for solving the elastica of simple beams with variable-arc-length subjected to a point loading. The beam model is based on Bernoulli-Euler beam theory. The Runge-Kutta and Regula-Falsi methods, respectively, are used to solve the governing differential equations and to compute the beam's rotation at the left end of the beams. Extensive numerical results of the elastica responses, including deflected shapes, rotations of cross-section and bending moments, are presented in non-dimensional forms. The possible maximum values of the end rotation, deflection and bending moment are determined by analyzing the numerical data obtained in this study.

  • PDF

Large deflection of simple variable-arc-length beam subjected to a point load

  • Chucheepsakul, S.;Thepphitak, G.;Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.49-59
    • /
    • 1996
  • This paper considers large deflection problem of a simply supported beam with variable are length subjected to a point load. The beam has one of its ends hinged and at a fixed distance from this end propped by a frictionless support over which the beam can slide freely. This highly nonlinear flexural problem is solved by elliptic-integral method and shooting-optimization technique, thereby providing independent checks on the new solutions. Because the beam can slide freely over the frictionless support, there is a maximum or critical load which the beam can carry and it is dependent on the position of the load. Interestingly, two possible equilibrium configurations can be obtained for a given load magnitude which is less than the critical value. The maximum arc-length was found to be equal to about 2.19 times the fixed distance between the supports and this value is independent of the load position.

Large deflections of variable-arc-length beams under uniform self weight: Analytical and experimental

  • Pulngern, Tawich;Halling, Marvin W.;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2005
  • This paper presents the solution of large static deflection due to uniformly distributed self weight and the critical or maximum applied uniform loading that a simply supported beam with variable-arc-length can resist. Two analytical approaches are presented and validated experimentally. The first approach is a finite-element discretization of the span length based on the variational formulation, which gives the solution of large static sag deflections for the stable equilibrium case. The second approach is the shooting method based on an elastica theory formulation. This method gives the results of the stable and unstable equilibrium configurations, and the critical uniform loading. Experimental studies were conducted to complement the analytical results for the stable equilibrium case. The measured large static configurations are found to be in good agreement with the two analytical approaches, and the critical uniform self weight obtained experimentally also shows good correlation with the shooting method.

Geometrical Non-linear Analyses of Tapered Variable-Arc-Length Beam subjected to Combined Load (조합하중을 받는 변단면 변화곡선 보의 기하 비선형 수치해석)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Lee, Tae-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • This paper deals with geometrical non-linear analyses of the tapered variable-arc-length beam, subjected to the combined load with an end moment and a point load. The beam is supported by a hinged end and a frictionless sliding support so that the axial length of the deformed beam can be increased by its load. Cross sections of the beam whose flexural rigidities are functionally varied with the axial coordinate. The simultaneous differential equations governing the elastica of such beam are derived on the basis of the Bernoulli-Euler beam theory. These differential equations are numerically solved by the iteration technique for obtaining the elastica of the deformed beam. For validating theories developed herein, laboratory scaled experiments are conducted.