References
- Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J. and Strehlow, R.A. (1983), 'Explosion hazards and evaluation', Elsevier Scientific
- Chen, H. and Liew, J.Y.R. (2005), 'Explosion and fire analysis of steel frames using mixed element approach', J. Eng. Mech., ASCE, 131(6), 606-616 https://doi.org/10.1061/(ASCE)0733-9399(2005)131:6(606)
- Fang, Q. and Izzuddin, B.A. (1997), 'Rate-sensitive analysis of framed structures. Part II: Implementation and application to steel and R/C frames', Struct. Eng. Mech., 5(3), 239-256 https://doi.org/10.12989/sem.1997.5.3.239
- Ghabossi, J., Millavec, W.A. and Isenberg, J. (1984), 'R/C structures under impulsive loading', J. Struct. Eng.,110(3), 505-552 https://doi.org/10.1061/(ASCE)0733-9445(1984)110:3(505)
- Hallquist, J.Q. (1988), LS-DYNA Theoretical Manual, Livermore Software Technology Corporation, Livermore
- Henrych, J. (1979), The Dynamics of Explosion and Its Use, Elsevier Scientific Publishing Company
- Izzuddin, B.A. and Fang, Q. (1997), 'Rate-sensitive analysis of framed structures. Part I: Model formulation and verification', Struct. Eng. Mech., 5(3), 221-237 https://doi.org/10.12989/sem.1997.5.3.221
- Izzuddin, B.A., Song, L. and Elnashai, A.S. (2000), 'Integrated adaptive environment for fire and explosion analysis of steel frames. Part II: Verification and application', J. Constr. Steel Res., 53(1), 87-111 https://doi.org/10.1016/S0143-974X(99)00041-3
- Krauthammer, T. (1984), 'Shallow-buried RC box-type structures', J. Struct. Eng., 110(3), 637-651 https://doi.org/10.1061/(ASCE)0733-9445(1984)110:3(637)
- Krauthammer, T., Bazeos, N. and Holmquist, T.J. (1986), 'Modified SDOF analysis of RC box-type structures', J. Struct. Eng., 112(4), 726-744 https://doi.org/10.1061/(ASCE)0733-9445(1986)112:4(726)
- Liwe, J.Y.R. and Chen, H. (2004), 'Explosion and fire analysis of steel frames using fiber element approach', J. Eng. Mech., ASCE, 130(7), 991-1000 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:7(991)
- LS-DYNA Keyword User’s Manual, version 971. Livermore Software Technology Corporation, May 2007
- Ross, T.J. (1983), 'Direct shear failure in reinforced concrete beams under impulsive loading', AFWL-TR-83-84, Kirtland Air Force BASE, NM: Air Force Weapons Laboratory
- Song, L., Izzuddin, B.A. and Elnashai, A.S. (2000), 'Integrated adaptive environment for fire and explosion analysis of steel frames. Part I: Analytical models', J. Constr. Steel Res., 53(1), 63-85 https://doi.org/10.1016/S0143-974X(99)00040-1
- Yang, T. (2008), 'Research on the characteristics of steel-concrete composite beam under contact detonation', Master Degree Thesis of Tongji University, Shanghai, China
Cited by
- Experimental analysis on steel and lightweight concrete composite beams vol.10, pp.2, 2009, https://doi.org/10.12989/scs.2010.10.2.169
- Minimum deformability design of high-strength concrete beams in non-seismic regions vol.8, pp.4, 2009, https://doi.org/10.12989/cac.2011.8.4.445
- Debonding failure analysis of FRP-retrofitted concrete panel under blast loading vol.38, pp.4, 2009, https://doi.org/10.12989/sem.2011.38.4.479
- Concurrent flexural strength and deformability design of high-performance concrete beams vol.40, pp.4, 2009, https://doi.org/10.12989/sem.2011.40.4.541
- Numerical investigation of a new structural configuration of a concrete barrier wall under the effect of blast loads vol.11, pp.suppl1, 2009, https://doi.org/10.1007/s40091-019-00252-8
- Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite vol.23, pp.3, 2009, https://doi.org/10.12989/gae.2020.23.3.245
- Blast pressure analysis due to confined explosion-after effects vol.28, pp.None, 2020, https://doi.org/10.1016/j.istruc.2020.08.057
- Development of a generalized scaling law for underwater explosions using a numerical and experimental parametric study vol.77, pp.3, 2009, https://doi.org/10.12989/sem.2021.77.3.305