참고문헌
- Au, S. and Beck, J. (2001a), "First excursion probabilities for linear systems by very efficient importance sampling", Probabilist. Eng. Mech., 16, 193-207 https://doi.org/10.1016/S0266-8920(01)00002-9
- Au, S., Ching, J. and Beck, J. (2007), "Application of subset simulation methods to reliability benchmark problems", Struct. Safety, 29, 183-193 https://doi.org/10.1016/j.strusafe.2006.07.008
- Au, S.-K. and Beck, J.L. (2001b), "Estimation of small failure probabilities in high dimensions by subset simulation", Probabilist. Eng. Mech., 16(4), 263-277 https://doi.org/10.1016/S0266-8920(01)00019-4
- Au, S.K. and Beck, J.L. (2003), "Important sampling in high dimensions", Struct. Safety, 25(2), 139-163 https://doi.org/10.1016/S0167-4730(02)00047-4
- Cai, G. and Lin, Y. (1996), "Generation of non-gaussian stationary processes", Phys. Rev. E, 54(1), 299-303 https://doi.org/10.1103/PhysRevE.54.299
- Cameron, R. and Martin, W. (1947), "The orthogonal development of nonlinear functionals in series of fourierhermite functionals", Ann. Math., 48, 385-392 https://doi.org/10.2307/1969178
- Ching, J., Beck, J. and Au, S. (2005), "Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation", Probabilist. Eng. Mech., 20, 199-214 https://doi.org/10.1016/j.probengmech.2004.09.001
- Deodatis, G. and Shinozuka, M. (1989), "Simulation of seismic ground motion using stochastic waves", J. Eng. Mech., ASCE, 115(12), 2723-2737 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:12(2723)
- Ding, C., Hsieh, C., Wu, Q. and Pedram, M. (1996), "Stratified random sampling for power estimation", Iccad 00, 576
- Ding, C., Wu, Q., Hsieh, C. and Pedram, M. (1998), "Stratified random sampling for power estimation", IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 17(6), 465-471 https://doi.org/10.1109/43.703828
- Ditlevsen, O. and Madsen, H.O. (2005), Structural Reliability Methods. (First edition published by John Wiley & Sons Ltd., Chichester, 1996, ISBN 0 471 96086 1), Internet edition 2.2.5
- Fishman, G. (1996), Monte Carlo: Concepts, Algorithms, Applications, Springer, New York
- Geman, S. and Geman, D. (1988), "Stochastic relaxation, gibbs distributions, and the bayesian restoration of images", 611-634 https://doi.org/10.1080/02664769300000058
- Ghanem, R. and Kruger, R. (1996), "Numerical solution of spectral stochastic finite element systems", Comput. Meth. Appl. Mech. Eng., 129 https://doi.org/10.1016/0045-7825(95)00909-4
- Ghanem, R. and Spanos, P. (1991), Stochastic Finite Elements: A Spectral Approach, Springer Verlag, Berlin
- Grigoriu, M. (1995), Non-Gaussian Processes. Examples, Theory, Simulation, Linear Random Vibration, and MATLAB Solutions, Prentice Hall, Englewood Cliffs, New Jersey
- Hammersley, J. and Handscomb, D. (1964), Monte Carlo Methods, Chapman and Hall, London
- Hastings, W. (1970), "Monte carlo sampling methods using markov chains and their applications", Biometrika 82, 711-732 https://doi.org/10.1093/biomet/82.4.711
- Helton, J. and Davis, F. (2003), "Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems", Reliab. Eng. Syst. Safety, 81(1), 23-69 https://doi.org/10.1016/S0951-8320(03)00058-9
- Huntington, D. and Lyrintzis, C. (1998), "Improvements to and limitations of latin hypercube sampling", Probabilist. Eng. Mech., 13(9), 245-253 https://doi.org/10.1016/S0266-8920(97)00013-1
- Kahn, H. (1956), "Use of different monte carlo sampling techniques", in H.A. Meyer, ed., Symposium on Monte Carlo Methods, John Wiley & Sons
- Kameda, H. and Morikawa, H. (1991), "Simulation of conditional random fields - a basis for regional seismic monitoring for urban earthquake hazards mitigation-", in Y. Wen, ed., Intelligent Structures-2, Monitoring and Control, Proceeding of the International Workshop on Intelligent Systems, Elsevier Science Publishers, England, Perugia, Italy, 13-27
- Kameda, H. and Morikawa, H. (1992), "An interpolating stochastic process for simulation of conditional random fields", Probabilist. Eng. Mech., ASCE, 7(4), 242-254 https://doi.org/10.1016/0266-8920(92)90028-G
- Kameda, H. and Morikawa, H. (1993), "Conditioned stochastic processes for conditional random fields", J. Eng. Mech., 120(4), 855-875 https://doi.org/10.1061/(ASCE)0733-9399(1994)120:4(855)
- Katafygiotis, L. and Cheung, S. (2007), "Application of spherical subset simulation methodand auxiliary domain method on a benchmark reliability study", Struct. Safety, 29, 194-207 https://doi.org/10.1016/j.strusafe.2006.07.003
- Katafygiotis, L. and Zuev, K. (2007), "Estimation of small failure probabilities in high dimensions by adaptive linked importance sampling", in Conference on Computational Methods in Structural Dynamic and Earthquake Engineering, Grete, Greece
- Katafygiotis, L. and Zuev, K. (2008), "Geometric insight into the challenges of solving high-dimensional reliability problems", Probabilist. Eng. Mech., 23, 208-218 https://doi.org/10.1016/j.probengmech.2007.12.026
- Katafygiotis, L., Moan, T. and Cheung, S. (2007), "Auxiliary domain method for solving multi objective dynamic reliability problems for nonlinear structures", Struct. Eng. Mech., 25(3), 347-363
-
Koutsourelakis, P., Pradlwarter, H.J. and Schu
$\ddot{e}$ ller, G.I. (2004), "Reliability of structures in high dimensions, part I: algorithms and applications", Probabilist. Eng. Mech., 19(4), 409-417 https://doi.org/10.1016/j.probengmech.2004.05.001 - Liu, J. (2001), Monte Carlo Strategies in Scientific Computing, Springer Series in Statistics, Springer
- Liu, P.L. and Der Kiureghian, A. (1986), "Multivariate distribution models with prescribed marginals and covariances", Probabilist. Eng. Mech., 1(2), 105-112 https://doi.org/10.1016/0266-8920(86)90033-0
-
Lo
$\grave{e}$ ve, M. (1977), Probability Theory, 4th edition edn, Springer-Verlag, New York - Metropolis, N. and Ulam, S. (1949), "The monte carlo method", J. Am. Statist. Assoc., 44, 335-341 https://doi.org/10.2307/2280232
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller E. (1953), "Equation of state calculation by fast computing machines", J. Chem. Phys., 21, 1087-1092 https://doi.org/10.1063/1.1699114
- Neal, R.M. (2001), "Annealed importance sampling", Statist. Comput., 11(2), 125-139 https://doi.org/10.1023/A:1008923215028
- Olsen, A.I. and Naess, A. (2006), "Estimation of failure probabilities of linear dynamic systems by importance sampling", Sadhana, 31-4, 429-443 https://doi.org/10.1007/BF02716785
- Olsson, A., Sandberg, G. and Dahlblom, O. (2003), "On latin hypercube sampling for structural reliability analysis", Struct. Safety, 25, 47-68(22) https://doi.org/10.1016/S0167-4730(02)00039-5
-
Pradlwarter, H. and Schu
$\ddot{e}$ ller, G. (2008, submitted), "Reliability assessment of uncertain dynamical linear systems - Recent advances", Struct. Safety -
Pradlwarter, H.J. and Schu
$\ddot{e}$ ller, G.I. (2004), "Excursion probability of non-linear systems", Int. J. Non-linear Mech., 39(9), 1447-1452 https://doi.org/10.1016/j.ijnonlinmec.2004.02.006 -
Pradlwarter, H.J., Schu
$\ddot{e}$ ller, G.I., Koutsourelakis, P.S. and Charmpis, D.C. (2007), "Application of line sampling simulation method to reliability benchmark problems", Struct. Safety, 29(3), 208-221 https://doi.org/10.1016/j.strusafe.2006.07.009 - Rice, S. (1954), "Mathematical analysis of random noise", in N. Wax, ed., Selected Papers on Noise and Stochastic Processes, Dover, pp. 133-294. originally appeared in two parts in the Bell System Technical Journ. in Vol. 23, July 1944 and in Vol. 24, January 1945
-
Schu
$\ddot{e}$ ller, G.I. and Stix, R. (1987), "A critical appraisal of methods to determine failure probabilities", Journal of Struct. Safety, 4, 293-309 https://doi.org/10.1016/0167-4730(87)90004-X -
Schu
$\ddot{e}$ ller, G.I., Bucher, C., Bourgund, U. and Ouypornprasert, W. (1989), "On efficient computational schemes to calculate structural failure probabilities", J. Probabilist. Eng. Mech., 4(1), 10-18 https://doi.org/10.1016/0266-8920(89)90003-9 -
Schu
$\ddot{e}$ ller, G.I., Pradlwarter, H.J. and Koutsourelakis, P. (2004), "A critical appraisal of reliability estimation procedures for high dimensions", Probabilist. Eng. Mech., 19(4), 463-474 https://doi.org/10.1016/j.probengmech.2004.05.004 - Shinozuka, M. (1972), "Monte carlo solution of structural dynamics", Comput. Struct., 2(5+6), 855-874
- Shinozuka, M. and Jan, C.M. (1972), "Digital simulation of random processes and its applications", J. Sound Vib., 25(1), 111-128 https://doi.org/10.1016/0022-460X(72)90600-1
- Yamazaki, F. and Shinozuka, M. (1988), "Digital generation of non-gaussian stochastic fields", J. Eng. Mech., ASCE, 114(7), 1183-1197 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:7(1183)
- Yang, J.N. (1972), "Simulation of random envelope processes", J. Sound Vib., 25(1), 73-85
- Yang, J.N. (1973), "On the normality and accuracy of simulated random processes", J. Sound Vib., 26(3), 417-428 https://doi.org/10.1016/S0022-460X(73)80196-8
- Yang, W.N. and Liou, W.W. (1996), "Combining antithetic variates and control variates in simulation experiments", ACM Trans. Model. Comput. Simul., 6(4), 243-260 https://doi.org/10.1145/240896.240899
피인용 문헌
- A new effective approach for computation of reliability index in nonlinear problems of reliability analysis vol.60, 2018, https://doi.org/10.1016/j.cnsns.2018.01.016
- A Modification to HL-RF Method for Computation of Structural Reliability Index in Problems with Skew-distributed Variables 2018, https://doi.org/10.1007/s12205-017-1473-1
- Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions vol.92-93, 2012, https://doi.org/10.1016/j.compstruc.2011.10.017
- Reliability-based design optimization of structural systems using a hybrid genetic algorithm vol.52, pp.6, 2014, https://doi.org/10.12989/sem.2014.52.6.1099
- Computational strategy for the crash design analysis using an uncertain computational mechanical model vol.52, pp.2, 2013, https://doi.org/10.1007/s00466-012-0822-7
- An efficient reliability algorithm for locating design point using the combination of importance sampling concepts and response surface method vol.47, 2017, https://doi.org/10.1016/j.cnsns.2016.11.021
- Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system vol.107, 2012, https://doi.org/10.1016/j.ress.2011.08.006
- A robust and efficient structural reliability method combining radial-based importance sampling and Kriging 2018, https://doi.org/10.1007/s11431-016-9068-1
- How to effectively compute the reliability of a thermal–hydraulic nuclear passive system vol.241, pp.1, 2011, https://doi.org/10.1016/j.nucengdes.2010.10.029
- Locating design point in structural reliability analysis by introduction of a control parameter and moving limited regions vol.126, 2017, https://doi.org/10.1016/j.ijmecsci.2017.04.003
- Imprecise probabilities in engineering analyses vol.37, pp.1-2, 2013, https://doi.org/10.1016/j.ymssp.2013.01.024
- Discrete Optimum Design for Truss Structures by Subset Simulation Algorithm vol.28, pp.4, 2015, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000411
- An adaptive directional importance sampling method for structural reliability analysis vol.70, 2018, https://doi.org/10.1016/j.strusafe.2017.07.006
- Probabilistic Analysis of Shear Resistance Assured by Concrete Compression vol.172, 2017, https://doi.org/10.1016/j.proeng.2017.02.027
- Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation vol.64, pp.11, 2012, https://doi.org/10.1016/j.camwa.2012.09.010
- A new three-phase algorithm for computation of reliability index and its application in structural mechanics vol.85, 2017, https://doi.org/10.1016/j.mechrescom.2017.08.008
- Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution vol.49, pp.3, 2014, https://doi.org/10.12989/sem.2014.49.3.355
- New structural reliability method with focus on important region and based on adaptive support vector machines vol.9, pp.6, 2017, https://doi.org/10.1177/1687814017710581
- Stochastic modeling of uncertainties in computational structural dynamics—Recent theoretical advances vol.332, pp.10, 2013, https://doi.org/10.1016/j.jsv.2011.10.010
- Design optimization using Subset Simulation algorithm vol.32, pp.6, 2010, https://doi.org/10.1016/j.strusafe.2010.03.001
- Robustness analysis of an uncertain computational model to predict well integrity for geologic CO2 sequestration vol.17, pp.2, 2013, https://doi.org/10.1007/s10596-012-9332-0
- Probabilistic Analysis of Shear Resistance due to Concrete Tension vol.797, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.797.35
- Analysis of structural dynamic reliability based on the probability density evolution method vol.45, pp.2, 2009, https://doi.org/10.12989/sem.2013.45.2.201
- Cell renormalized FPK equation for stochastic non-linear systems vol.60, pp.None, 2009, https://doi.org/10.1016/j.probengmech.2020.103045
- Decomposable polynomial response surface method and its adaptive order revision around most probable point vol.76, pp.6, 2009, https://doi.org/10.12989/sem.2020.76.6.675
- Reliability Assessment of Passive Safety Systems for Nuclear Energy Applications: State-of-the-Art and Open Issues vol.14, pp.15, 2009, https://doi.org/10.3390/en14154688
- Modified Dimension Reduction-Based Polynomial Chaos Expansion for Nonstandard Uncertainty Propagation and Its Application in Reliability Analysis vol.9, pp.10, 2009, https://doi.org/10.3390/pr9101856
- Relaxed power spectrum estimation from multiple data records utilising subjective probabilities vol.165, pp.None, 2022, https://doi.org/10.1016/j.ymssp.2021.108346