DOI QR코드

DOI QR Code

Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis - recent advances

  • Schueller, G.I. (Institute of Engineering Mechanics, University of Innsbruck)
  • Received : 2008.07.24
  • Accepted : 2009.02.03
  • Published : 2009.05.10

Abstract

The present contribution addresses uncertainty quantification and uncertainty propagation in structural mechanics using stochastic analysis. Presently available procedures to describe uncertainties in load and resistance within a suitable mathematical framework are shortly addressed. Monte Carlo methods are proposed for studying the variability in the structural properties and for their propagation to the response. The general applicability and versatility of Monte Carlo Simulation is demonstrated in the context with computational models that have been developed for deterministic structural analysis. After discussing Direct Monte Carlo Simulation for the assessment of the response variability, some recently developed advanced Monte Carlo methods applied for reliability assessment are described, such as Importance Sampling for linear uncertain structures subjected to Gaussian loading, Line Sampling in linear dynamics and Subset simulation. The numerical example demonstrates the applicability of Line Sampling to general linear uncertain FE systems under Gaussian distributed excitation.

Keywords

References

  1. Au, S. and Beck, J. (2001a), "First excursion probabilities for linear systems by very efficient importance sampling", Probabilist. Eng. Mech., 16, 193-207 https://doi.org/10.1016/S0266-8920(01)00002-9
  2. Au, S., Ching, J. and Beck, J. (2007), "Application of subset simulation methods to reliability benchmark problems", Struct. Safety, 29, 183-193 https://doi.org/10.1016/j.strusafe.2006.07.008
  3. Au, S.-K. and Beck, J.L. (2001b), "Estimation of small failure probabilities in high dimensions by subset simulation", Probabilist. Eng. Mech., 16(4), 263-277 https://doi.org/10.1016/S0266-8920(01)00019-4
  4. Au, S.K. and Beck, J.L. (2003), "Important sampling in high dimensions", Struct. Safety, 25(2), 139-163 https://doi.org/10.1016/S0167-4730(02)00047-4
  5. Cai, G. and Lin, Y. (1996), "Generation of non-gaussian stationary processes", Phys. Rev. E, 54(1), 299-303 https://doi.org/10.1103/PhysRevE.54.299
  6. Cameron, R. and Martin, W. (1947), "The orthogonal development of nonlinear functionals in series of fourierhermite functionals", Ann. Math., 48, 385-392 https://doi.org/10.2307/1969178
  7. Ching, J., Beck, J. and Au, S. (2005), "Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation", Probabilist. Eng. Mech., 20, 199-214 https://doi.org/10.1016/j.probengmech.2004.09.001
  8. Deodatis, G. and Shinozuka, M. (1989), "Simulation of seismic ground motion using stochastic waves", J. Eng. Mech., ASCE, 115(12), 2723-2737 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:12(2723)
  9. Ding, C., Hsieh, C., Wu, Q. and Pedram, M. (1996), "Stratified random sampling for power estimation", Iccad 00, 576
  10. Ding, C., Wu, Q., Hsieh, C. and Pedram, M. (1998), "Stratified random sampling for power estimation", IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 17(6), 465-471 https://doi.org/10.1109/43.703828
  11. Ditlevsen, O. and Madsen, H.O. (2005), Structural Reliability Methods. (First edition published by John Wiley & Sons Ltd., Chichester, 1996, ISBN 0 471 96086 1), Internet edition 2.2.5
  12. Fishman, G. (1996), Monte Carlo: Concepts, Algorithms, Applications, Springer, New York
  13. Geman, S. and Geman, D. (1988), "Stochastic relaxation, gibbs distributions, and the bayesian restoration of images", 611-634 https://doi.org/10.1080/02664769300000058
  14. Ghanem, R. and Kruger, R. (1996), "Numerical solution of spectral stochastic finite element systems", Comput. Meth. Appl. Mech. Eng., 129 https://doi.org/10.1016/0045-7825(95)00909-4
  15. Ghanem, R. and Spanos, P. (1991), Stochastic Finite Elements: A Spectral Approach, Springer Verlag, Berlin
  16. Grigoriu, M. (1995), Non-Gaussian Processes. Examples, Theory, Simulation, Linear Random Vibration, and MATLAB Solutions, Prentice Hall, Englewood Cliffs, New Jersey
  17. Hammersley, J. and Handscomb, D. (1964), Monte Carlo Methods, Chapman and Hall, London
  18. Hastings, W. (1970), "Monte carlo sampling methods using markov chains and their applications", Biometrika 82, 711-732 https://doi.org/10.1093/biomet/82.4.711
  19. Helton, J. and Davis, F. (2003), "Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems", Reliab. Eng. Syst. Safety, 81(1), 23-69 https://doi.org/10.1016/S0951-8320(03)00058-9
  20. Huntington, D. and Lyrintzis, C. (1998), "Improvements to and limitations of latin hypercube sampling", Probabilist. Eng. Mech., 13(9), 245-253 https://doi.org/10.1016/S0266-8920(97)00013-1
  21. Kahn, H. (1956), "Use of different monte carlo sampling techniques", in H.A. Meyer, ed., Symposium on Monte Carlo Methods, John Wiley & Sons
  22. Kameda, H. and Morikawa, H. (1991), "Simulation of conditional random fields - a basis for regional seismic monitoring for urban earthquake hazards mitigation-", in Y. Wen, ed., Intelligent Structures-2, Monitoring and Control, Proceeding of the International Workshop on Intelligent Systems, Elsevier Science Publishers, England, Perugia, Italy, 13-27
  23. Kameda, H. and Morikawa, H. (1992), "An interpolating stochastic process for simulation of conditional random fields", Probabilist. Eng. Mech., ASCE, 7(4), 242-254 https://doi.org/10.1016/0266-8920(92)90028-G
  24. Kameda, H. and Morikawa, H. (1993), "Conditioned stochastic processes for conditional random fields", J. Eng. Mech., 120(4), 855-875 https://doi.org/10.1061/(ASCE)0733-9399(1994)120:4(855)
  25. Katafygiotis, L. and Cheung, S. (2007), "Application of spherical subset simulation methodand auxiliary domain method on a benchmark reliability study", Struct. Safety, 29, 194-207 https://doi.org/10.1016/j.strusafe.2006.07.003
  26. Katafygiotis, L. and Zuev, K. (2007), "Estimation of small failure probabilities in high dimensions by adaptive linked importance sampling", in Conference on Computational Methods in Structural Dynamic and Earthquake Engineering, Grete, Greece
  27. Katafygiotis, L. and Zuev, K. (2008), "Geometric insight into the challenges of solving high-dimensional reliability problems", Probabilist. Eng. Mech., 23, 208-218 https://doi.org/10.1016/j.probengmech.2007.12.026
  28. Katafygiotis, L., Moan, T. and Cheung, S. (2007), "Auxiliary domain method for solving multi objective dynamic reliability problems for nonlinear structures", Struct. Eng. Mech., 25(3), 347-363
  29. Koutsourelakis, P., Pradlwarter, H.J. and Schu$\ddot{e}$ller, G.I. (2004), "Reliability of structures in high dimensions, part I: algorithms and applications", Probabilist. Eng. Mech., 19(4), 409-417 https://doi.org/10.1016/j.probengmech.2004.05.001
  30. Liu, J. (2001), Monte Carlo Strategies in Scientific Computing, Springer Series in Statistics, Springer
  31. Liu, P.L. and Der Kiureghian, A. (1986), "Multivariate distribution models with prescribed marginals and covariances", Probabilist. Eng. Mech., 1(2), 105-112 https://doi.org/10.1016/0266-8920(86)90033-0
  32. Lo$\grave{e}$ve, M. (1977), Probability Theory, 4th edition edn, Springer-Verlag, New York
  33. Metropolis, N. and Ulam, S. (1949), "The monte carlo method", J. Am. Statist. Assoc., 44, 335-341 https://doi.org/10.2307/2280232
  34. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller E. (1953), "Equation of state calculation by fast computing machines", J. Chem. Phys., 21, 1087-1092 https://doi.org/10.1063/1.1699114
  35. Neal, R.M. (2001), "Annealed importance sampling", Statist. Comput., 11(2), 125-139 https://doi.org/10.1023/A:1008923215028
  36. Olsen, A.I. and Naess, A. (2006), "Estimation of failure probabilities of linear dynamic systems by importance sampling", Sadhana, 31-4, 429-443 https://doi.org/10.1007/BF02716785
  37. Olsson, A., Sandberg, G. and Dahlblom, O. (2003), "On latin hypercube sampling for structural reliability analysis", Struct. Safety, 25, 47-68(22) https://doi.org/10.1016/S0167-4730(02)00039-5
  38. Pradlwarter, H. and Schu$\ddot{e}$ller, G. (2008, submitted), "Reliability assessment of uncertain dynamical linear systems - Recent advances", Struct. Safety
  39. Pradlwarter, H.J. and Schu$\ddot{e}$ller, G.I. (2004), "Excursion probability of non-linear systems", Int. J. Non-linear Mech., 39(9), 1447-1452 https://doi.org/10.1016/j.ijnonlinmec.2004.02.006
  40. Pradlwarter, H.J., Schu$\ddot{e}$ller, G.I., Koutsourelakis, P.S. and Charmpis, D.C. (2007), "Application of line sampling simulation method to reliability benchmark problems", Struct. Safety, 29(3), 208-221 https://doi.org/10.1016/j.strusafe.2006.07.009
  41. Rice, S. (1954), "Mathematical analysis of random noise", in N. Wax, ed., Selected Papers on Noise and Stochastic Processes, Dover, pp. 133-294. originally appeared in two parts in the Bell System Technical Journ. in Vol. 23, July 1944 and in Vol. 24, January 1945
  42. Schu$\ddot{e}$ller, G.I. and Stix, R. (1987), "A critical appraisal of methods to determine failure probabilities", Journal of Struct. Safety, 4, 293-309 https://doi.org/10.1016/0167-4730(87)90004-X
  43. Schu$\ddot{e}$ller, G.I., Bucher, C., Bourgund, U. and Ouypornprasert, W. (1989), "On efficient computational schemes to calculate structural failure probabilities", J. Probabilist. Eng. Mech., 4(1), 10-18 https://doi.org/10.1016/0266-8920(89)90003-9
  44. Schu$\ddot{e}$ller, G.I., Pradlwarter, H.J. and Koutsourelakis, P. (2004), "A critical appraisal of reliability estimation procedures for high dimensions", Probabilist. Eng. Mech., 19(4), 463-474 https://doi.org/10.1016/j.probengmech.2004.05.004
  45. Shinozuka, M. (1972), "Monte carlo solution of structural dynamics", Comput. Struct., 2(5+6), 855-874
  46. Shinozuka, M. and Jan, C.M. (1972), "Digital simulation of random processes and its applications", J. Sound Vib., 25(1), 111-128 https://doi.org/10.1016/0022-460X(72)90600-1
  47. Yamazaki, F. and Shinozuka, M. (1988), "Digital generation of non-gaussian stochastic fields", J. Eng. Mech., ASCE, 114(7), 1183-1197 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:7(1183)
  48. Yang, J.N. (1972), "Simulation of random envelope processes", J. Sound Vib., 25(1), 73-85
  49. Yang, J.N. (1973), "On the normality and accuracy of simulated random processes", J. Sound Vib., 26(3), 417-428 https://doi.org/10.1016/S0022-460X(73)80196-8
  50. Yang, W.N. and Liou, W.W. (1996), "Combining antithetic variates and control variates in simulation experiments", ACM Trans. Model. Comput. Simul., 6(4), 243-260 https://doi.org/10.1145/240896.240899

Cited by

  1. A new effective approach for computation of reliability index in nonlinear problems of reliability analysis vol.60, 2018, https://doi.org/10.1016/j.cnsns.2018.01.016
  2. A Modification to HL-RF Method for Computation of Structural Reliability Index in Problems with Skew-distributed Variables 2018, https://doi.org/10.1007/s12205-017-1473-1
  3. Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions vol.92-93, 2012, https://doi.org/10.1016/j.compstruc.2011.10.017
  4. Reliability-based design optimization of structural systems using a hybrid genetic algorithm vol.52, pp.6, 2014, https://doi.org/10.12989/sem.2014.52.6.1099
  5. Computational strategy for the crash design analysis using an uncertain computational mechanical model vol.52, pp.2, 2013, https://doi.org/10.1007/s00466-012-0822-7
  6. An efficient reliability algorithm for locating design point using the combination of importance sampling concepts and response surface method vol.47, 2017, https://doi.org/10.1016/j.cnsns.2016.11.021
  7. Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system vol.107, 2012, https://doi.org/10.1016/j.ress.2011.08.006
  8. A robust and efficient structural reliability method combining radial-based importance sampling and Kriging 2018, https://doi.org/10.1007/s11431-016-9068-1
  9. How to effectively compute the reliability of a thermal–hydraulic nuclear passive system vol.241, pp.1, 2011, https://doi.org/10.1016/j.nucengdes.2010.10.029
  10. Locating design point in structural reliability analysis by introduction of a control parameter and moving limited regions vol.126, 2017, https://doi.org/10.1016/j.ijmecsci.2017.04.003
  11. Imprecise probabilities in engineering analyses vol.37, pp.1-2, 2013, https://doi.org/10.1016/j.ymssp.2013.01.024
  12. Discrete Optimum Design for Truss Structures by Subset Simulation Algorithm vol.28, pp.4, 2015, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000411
  13. An adaptive directional importance sampling method for structural reliability analysis vol.70, 2018, https://doi.org/10.1016/j.strusafe.2017.07.006
  14. Probabilistic Analysis of Shear Resistance Assured by Concrete Compression vol.172, 2017, https://doi.org/10.1016/j.proeng.2017.02.027
  15. Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation vol.64, pp.11, 2012, https://doi.org/10.1016/j.camwa.2012.09.010
  16. A new three-phase algorithm for computation of reliability index and its application in structural mechanics vol.85, 2017, https://doi.org/10.1016/j.mechrescom.2017.08.008
  17. Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution vol.49, pp.3, 2014, https://doi.org/10.12989/sem.2014.49.3.355
  18. New structural reliability method with focus on important region and based on adaptive support vector machines vol.9, pp.6, 2017, https://doi.org/10.1177/1687814017710581
  19. Stochastic modeling of uncertainties in computational structural dynamics—Recent theoretical advances vol.332, pp.10, 2013, https://doi.org/10.1016/j.jsv.2011.10.010
  20. Design optimization using Subset Simulation algorithm vol.32, pp.6, 2010, https://doi.org/10.1016/j.strusafe.2010.03.001
  21. Robustness analysis of an uncertain computational model to predict well integrity for geologic CO2 sequestration vol.17, pp.2, 2013, https://doi.org/10.1007/s10596-012-9332-0
  22. Probabilistic Analysis of Shear Resistance due to Concrete Tension vol.797, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.797.35
  23. Analysis of structural dynamic reliability based on the probability density evolution method vol.45, pp.2, 2009, https://doi.org/10.12989/sem.2013.45.2.201
  24. Cell renormalized FPK equation for stochastic non-linear systems vol.60, pp.None, 2009, https://doi.org/10.1016/j.probengmech.2020.103045
  25. Decomposable polynomial response surface method and its adaptive order revision around most probable point vol.76, pp.6, 2009, https://doi.org/10.12989/sem.2020.76.6.675
  26. Reliability Assessment of Passive Safety Systems for Nuclear Energy Applications: State-of-the-Art and Open Issues vol.14, pp.15, 2009, https://doi.org/10.3390/en14154688
  27. Modified Dimension Reduction-Based Polynomial Chaos Expansion for Nonstandard Uncertainty Propagation and Its Application in Reliability Analysis vol.9, pp.10, 2009, https://doi.org/10.3390/pr9101856
  28. Relaxed power spectrum estimation from multiple data records utilising subjective probabilities vol.165, pp.None, 2022, https://doi.org/10.1016/j.ymssp.2021.108346