DOI QR코드

DOI QR Code

Generation of a Constitutive Green Fluorescent Protein Expression Construct to Mark Biocontrol Bacteria Using P43 Promoter from Bacillus subtilis

  • Published : 2009.06.30

Abstract

Marking biocontrol bacteria is an essential step to monitor bacterial behavior in natural environments before application in agricultural ecosystem. In this study, we presented the simple green fluorescent protein (GFP) reporter system driven by the promoter active in Bacillus species for tagging of the biocontrol bacteria. A constitutive promoter P43 from Bacillus subtilis was fused to an enhanced promoterless gfp gene by overlap extension PCR. The GFP expression was demonstrated by the high fluorescence intensity detected in B. subtilis and Escherichia coli transformed with the P43-gfp fusion construct, respectively. The GFP reporter system was further investigated in two bacterial biocontrol strains B. licheniformis and Pseudomonas fluorescens. When the reconstructed plasmid pWH34G was introduced into B. licheniformis, GFP level measured with the fluorescence intensity in B. licheniformis was almost equivalent to that in B. subtilis. However, GFP expression level was extremely low in other biocontrol bacteria P. fluorescens by transposon based stable insertion of the P43-gfp construct into the bacterial chromosome. This study provides information regarding to the efficient biomarker P43-gfp fusion construct for bio-control Bacillus species.

Keywords

References

  1. Boyer, H. W. and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41 :450-472 https://doi.org/10.1016/0022-2836(69)90288-5
  2. Buell, C. R. and Anderson, A. J. 1993. Expression of the aggA locus of Pseudomonas putida in vitro and in planta as detected by the reporter gene, xylE. Mol. Plant-Microbe Interact. 6:331-340 https://doi.org/10.1094/MPMI-6-331
  3. Burkholder, P. R. and Giles, N. H. 1947. Induced biochemical mutation in Bacillus subtilis. Am. J. Bot. 34:345-348 https://doi.org/10.2307/2437147
  4. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W Wand Prasher, D. C. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802-805 https://doi.org/10.1126/science.8303295
  5. Choi, G. J., Kim, J. C., Park, E. J. Choi, Y. H., Jang, K. S., Lim, H. K., Cho, K Y. and Lee, S-W 2006. Biological control activity of two isolates of Pseudomonas fluorescens against rice sheath blight. Plant Pathol. J. 22:289-294 https://doi.org/10.5423/PPJ.2006.22.3.289
  6. Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31 :53-80 https://doi.org/10.1146/annurev.py.31.090193.000413
  7. Cormack, B. P., Valdivia, E. A. and Falkow, S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33-38 https://doi.org/10.1016/0378-1119(95)00685-0
  8. Dennis, J. J. and Zylstra, G. J. 1998. Plasposons: modular selfcloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl. Environ. Micro-Biol. 64:2710-2715
  9. Figurski, D. H. and Helinski, D. R. 1979. Replication of an origincontaining derivatives of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76:1648-1652 https://doi.org/10.1073/pnas.76.4.1648
  10. Fravel, D. R., Connick. Jr. W J. and Lewis, J. A. 1998. Formulation of microorganisms to control plant diseases. In: Formulation of Microbial Pesticides: Beneficial Microorganisms, Nematodes and Seed Treatments, ed. by H. D. Burges, pp 187-202. Kluwer Academic Publishers, Dordrecht, The Netherlands
  11. Handelsman, J. and Stabb, E. V 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869 https://doi.org/10.1105/tpc.8.10.1855
  12. Heim, R., Cub itt, A. B. and Tsien, R. Y. 1995. Improved green fluorescence. Nature 373:663-664
  13. Higuchi, R., Krummel, B. and Saiki, R. K. 1988. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16:7351-7367 https://doi.org/10.1093/nar/16.15.7351
  14. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. and Pease, L. R. 1989. Engineering hybrid genes without the use ofrestriction enzymes: gene splicing by overlap extension. Gene 77:61-68 https://doi.org/10.1016/0378-1119(89)90359-4
  15. Jefferson, R.A. 1989. The gus reporter gene system. Nature 342:837-838 https://doi.org/10.1038/342837a0
  16. Keane, P. J., Kerr, A. and New, P. B. 1970. Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust. J. Biol. Sci. 23:585-595 https://doi.org/10.1071/BI9700585
  17. Kim, G. H., Lim, M. T., Hur, J.-S., Yum, K-J. and Koh, Y. J. 2009. Biological control of tea anthracnose using an antagonistic bacterium of Bacillus subtilis isolated from tea leaves. Plant Pathol. J. 25:99-102 https://doi.org/10.5423/PPJ.2009.25.1.099
  18. im, H. J., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. K., Kim, D. W, Lee, S-W and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis Nl formulation. J. Microbiol. Biotechnol. 17:438-444
  19. Lee, J. P., Lee, S-W, Kim, C. S., Son, J. H., Song, J. H., Lee, K Y., Kim, H. J., Jung, S. J. and Moon, B. J. 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Cont. 37:329-337 https://doi.org/10.1016/j.biocontrol.2006.01.001
  20. Loper, J. E. and Lindow, S. E. 1994. A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl. Environ. Microbiol. 60: 1934-1941
  21. March, J. C., Rao, G. and Bentley, W E. 2003. Biotechnological applications of green fluorescent protein. Appl. Microbiol. Biotechnol. 62:303-315 https://doi.org/10.1007/s00253-003-1339-y
  22. Miller, W G. and Lindow, S. E. 1997. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191:149-153 https://doi.org/10.1016/S0378-1119(97)00051-6
  23. Mo, Y. Y. and Gross, D. C. 1991. Expression in vitro and during plant pathogenesis ofthe syrB gene required for syringomycin production by Pseudomonas syringae pv. syringae. Mol. Plant-Microbe Interact. 4:28-36 https://doi.org/10.1094/MPMI-4-028
  24. O'Kane, D. J., Lingle, W L., Wampler, J. E., Legocki, M., Legocki, R. P. and Szalay, A. A. 1988. Visualization ofbioluminescence as a marker of gene expression in Rhizobiuminfected soybean nodules. Plant Mol. Biol. 10:387-399 https://doi.org/10.1007/BF00014945
  25. Olubajo, B. and Bacon, C. W 2008. Electrotransformation of Bacillus mojavensis with fluorescent protein markers. J. Microbiol. Methods 74:102-105 https://doi.org/10.1016/j.mimet.2008.03.011
  26. Park, K., Paul, D., Kim, Y. K., Nam, K W, Lee, Y. K., Choi, H. Wand Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25 https://doi.org/10.5423/PPJ.2007.23.1.022
  27. Prasher, D. C., Eckenrode, V. K, Ward, W W., Prendergast, F. G. and Cormier, M. J. 1992. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229-233 https://doi.org/10.1016/0378-1119(92)90691-H
  28. Prendergast, F. G. and Mann, K. G. 1978. Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequoreaforskalea. Biochemistry 17:3448-3453 https://doi.org/10.1021/bi00610a004
  29. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
  30. Stepanenko, O. V, Verkhusha, V V, Kumetsova, I. M., Uversky, V N. and Turoverov, K. K. 2008. Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes. Curr. Protein. Pept. Sci. 9:338-369 https://doi.org/10.2174/138920308785132668
  31. Wang, P. Z. and Doi, R. H. 1984. Overlapping promoters transcribed by Bacillus subtilis ${\sigma}^{55}$ and ${\sigma}^{37}$ RNA polymerase holoenzymes during growth and stationary phase. J. Biol. Chem. 259:8619-8625
  32. Webb, C. D., Decatur, A., Teleman, A. and Losick, R. 1995. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacteriol. 177:5906-5911 https://doi.org/10.1128/jb.177.20.5906-5911.1995
  33. Xue, G. P., Johnson, J. S. and Dalrymple, B. P. 1999. High osmolarity improve the electro-transformation efficiency of the gram-positive Bacillus subtilis and Bacillus licheniformis. J. Microbiol. Methods 34: 183-191 https://doi.org/10.1016/S0167-7012(98)00087-6
  34. Zhang, X-Z., Cui, Z. L., Hong, Q. and Li, S-P. 2005. High-level expression and selection of methyl parathion hydrolase in Bacillus subtilis WB800. Appl. Environ. Microbiol. 71 :4101-4103 https://doi.org/10.1128/AEM.71.7.4101-4103.2005

Cited by

  1. Fluorescent Proteins as a Visible Molecular Signal for Rapid Quantification of Bioprocesses: Potential and Challenges vol.18, pp.5, 2010, https://doi.org/10.1016/S1004-9541(09)60140-3
  2. Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes vol.77, pp.13, 2012, https://doi.org/10.1134/S0006297912130111
  3. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere vol.32, pp.2, 2016, https://doi.org/10.5423/PPJ.OA.08.2015.0172
  4. Development of a high-efficient transformation system of Bacillus pumilus strain DX01 to facilitate gene isolation via gfp-tagged insertional mutagenesis and visualize bacterial colonization of rice roots vol.58, pp.5, 2013, https://doi.org/10.1007/s12223-013-0223-0
  5. Introduction of the exogenous NADH coenzyme regeneration system and its influence on intracellular metabolic flux of Paenibacillus polymyxa vol.201, 2016, https://doi.org/10.1016/j.biortech.2015.11.067