References
- Boyer, H. W. and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41 :450-472 https://doi.org/10.1016/0022-2836(69)90288-5
- Buell, C. R. and Anderson, A. J. 1993. Expression of the aggA locus of Pseudomonas putida in vitro and in planta as detected by the reporter gene, xylE. Mol. Plant-Microbe Interact. 6:331-340 https://doi.org/10.1094/MPMI-6-331
- Burkholder, P. R. and Giles, N. H. 1947. Induced biochemical mutation in Bacillus subtilis. Am. J. Bot. 34:345-348 https://doi.org/10.2307/2437147
- Chalfie, M., Tu, Y., Euskirchen, G., Ward, W Wand Prasher, D. C. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802-805 https://doi.org/10.1126/science.8303295
- Choi, G. J., Kim, J. C., Park, E. J. Choi, Y. H., Jang, K. S., Lim, H. K., Cho, K Y. and Lee, S-W 2006. Biological control activity of two isolates of Pseudomonas fluorescens against rice sheath blight. Plant Pathol. J. 22:289-294 https://doi.org/10.5423/PPJ.2006.22.3.289
- Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31 :53-80 https://doi.org/10.1146/annurev.py.31.090193.000413
- Cormack, B. P., Valdivia, E. A. and Falkow, S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33-38 https://doi.org/10.1016/0378-1119(95)00685-0
- Dennis, J. J. and Zylstra, G. J. 1998. Plasposons: modular selfcloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl. Environ. Micro-Biol. 64:2710-2715
- Figurski, D. H. and Helinski, D. R. 1979. Replication of an origincontaining derivatives of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76:1648-1652 https://doi.org/10.1073/pnas.76.4.1648
- Fravel, D. R., Connick. Jr. W J. and Lewis, J. A. 1998. Formulation of microorganisms to control plant diseases. In: Formulation of Microbial Pesticides: Beneficial Microorganisms, Nematodes and Seed Treatments, ed. by H. D. Burges, pp 187-202. Kluwer Academic Publishers, Dordrecht, The Netherlands
- Handelsman, J. and Stabb, E. V 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869 https://doi.org/10.1105/tpc.8.10.1855
- Heim, R., Cub itt, A. B. and Tsien, R. Y. 1995. Improved green fluorescence. Nature 373:663-664
- Higuchi, R., Krummel, B. and Saiki, R. K. 1988. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16:7351-7367 https://doi.org/10.1093/nar/16.15.7351
- Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. and Pease, L. R. 1989. Engineering hybrid genes without the use ofrestriction enzymes: gene splicing by overlap extension. Gene 77:61-68 https://doi.org/10.1016/0378-1119(89)90359-4
- Jefferson, R.A. 1989. The gus reporter gene system. Nature 342:837-838 https://doi.org/10.1038/342837a0
- Keane, P. J., Kerr, A. and New, P. B. 1970. Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust. J. Biol. Sci. 23:585-595 https://doi.org/10.1071/BI9700585
- Kim, G. H., Lim, M. T., Hur, J.-S., Yum, K-J. and Koh, Y. J. 2009. Biological control of tea anthracnose using an antagonistic bacterium of Bacillus subtilis isolated from tea leaves. Plant Pathol. J. 25:99-102 https://doi.org/10.5423/PPJ.2009.25.1.099
- im, H. J., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. K., Kim, D. W, Lee, S-W and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis Nl formulation. J. Microbiol. Biotechnol. 17:438-444
- Lee, J. P., Lee, S-W, Kim, C. S., Son, J. H., Song, J. H., Lee, K Y., Kim, H. J., Jung, S. J. and Moon, B. J. 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Cont. 37:329-337 https://doi.org/10.1016/j.biocontrol.2006.01.001
- Loper, J. E. and Lindow, S. E. 1994. A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl. Environ. Microbiol. 60: 1934-1941
- March, J. C., Rao, G. and Bentley, W E. 2003. Biotechnological applications of green fluorescent protein. Appl. Microbiol. Biotechnol. 62:303-315 https://doi.org/10.1007/s00253-003-1339-y
- Miller, W G. and Lindow, S. E. 1997. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191:149-153 https://doi.org/10.1016/S0378-1119(97)00051-6
- Mo, Y. Y. and Gross, D. C. 1991. Expression in vitro and during plant pathogenesis ofthe syrB gene required for syringomycin production by Pseudomonas syringae pv. syringae. Mol. Plant-Microbe Interact. 4:28-36 https://doi.org/10.1094/MPMI-4-028
- O'Kane, D. J., Lingle, W L., Wampler, J. E., Legocki, M., Legocki, R. P. and Szalay, A. A. 1988. Visualization ofbioluminescence as a marker of gene expression in Rhizobiuminfected soybean nodules. Plant Mol. Biol. 10:387-399 https://doi.org/10.1007/BF00014945
- Olubajo, B. and Bacon, C. W 2008. Electrotransformation of Bacillus mojavensis with fluorescent protein markers. J. Microbiol. Methods 74:102-105 https://doi.org/10.1016/j.mimet.2008.03.011
- Park, K., Paul, D., Kim, Y. K., Nam, K W, Lee, Y. K., Choi, H. Wand Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25 https://doi.org/10.5423/PPJ.2007.23.1.022
- Prasher, D. C., Eckenrode, V. K, Ward, W W., Prendergast, F. G. and Cormier, M. J. 1992. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229-233 https://doi.org/10.1016/0378-1119(92)90691-H
- Prendergast, F. G. and Mann, K. G. 1978. Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequoreaforskalea. Biochemistry 17:3448-3453 https://doi.org/10.1021/bi00610a004
- Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
- Stepanenko, O. V, Verkhusha, V V, Kumetsova, I. M., Uversky, V N. and Turoverov, K. K. 2008. Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes. Curr. Protein. Pept. Sci. 9:338-369 https://doi.org/10.2174/138920308785132668
-
Wang, P. Z. and Doi, R. H. 1984. Overlapping promoters transcribed by Bacillus subtilis
${\sigma}^{55}$ and${\sigma}^{37}$ RNA polymerase holoenzymes during growth and stationary phase. J. Biol. Chem. 259:8619-8625 - Webb, C. D., Decatur, A., Teleman, A. and Losick, R. 1995. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacteriol. 177:5906-5911 https://doi.org/10.1128/jb.177.20.5906-5911.1995
- Xue, G. P., Johnson, J. S. and Dalrymple, B. P. 1999. High osmolarity improve the electro-transformation efficiency of the gram-positive Bacillus subtilis and Bacillus licheniformis. J. Microbiol. Methods 34: 183-191 https://doi.org/10.1016/S0167-7012(98)00087-6
- Zhang, X-Z., Cui, Z. L., Hong, Q. and Li, S-P. 2005. High-level expression and selection of methyl parathion hydrolase in Bacillus subtilis WB800. Appl. Environ. Microbiol. 71 :4101-4103 https://doi.org/10.1128/AEM.71.7.4101-4103.2005
Cited by
- Fluorescent Proteins as a Visible Molecular Signal for Rapid Quantification of Bioprocesses: Potential and Challenges vol.18, pp.5, 2010, https://doi.org/10.1016/S1004-9541(09)60140-3
- Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes vol.77, pp.13, 2012, https://doi.org/10.1134/S0006297912130111
- Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere vol.32, pp.2, 2016, https://doi.org/10.5423/PPJ.OA.08.2015.0172
- Development of a high-efficient transformation system of Bacillus pumilus strain DX01 to facilitate gene isolation via gfp-tagged insertional mutagenesis and visualize bacterial colonization of rice roots vol.58, pp.5, 2013, https://doi.org/10.1007/s12223-013-0223-0
- Introduction of the exogenous NADH coenzyme regeneration system and its influence on intracellular metabolic flux of Paenibacillus polymyxa vol.201, 2016, https://doi.org/10.1016/j.biortech.2015.11.067