References
- Alcaraz, J. and Maroto, C. (2001), A Robust Genetic Algorithm for Resource Allocation in Project Scheduling, Annals of Operations Research, 102, 83-109 https://doi.org/10.1023/A:1010949931021
- Blazewicz, J., Lenstra, J. K., and Rinooy Kan, A. H. G. (1983), Scheduling subject to resource constraints: Classification and complexity, Discrete Mathematics, 5, 11-24 https://doi.org/10.1016/0166-218X(83)90012-4
- Boctor, F. F. (1990), Some efficient multi-heuristic procedures for resource-constrained project scheduling, European Journal of Operational Research, 49, 3-13 https://doi.org/10.1016/0377-2217(90)90116-S
- Deb, K. (2001), Multi-objective optimization using evolutionary algorithm, Wiley, Chichester, 328
- Deb, K. and Jain, S. (2002), Running performance metrics for evolutionary multiobjective optimization, Asia-Pacific Conference Simulated Evolution and Learning (SEAL 01), Singapore, 12-20
- Debels, D., Reyck, B. D., Leus, R., and Vanhoucke, M. (2006), A hybrid scatter search/electromagnetism meta-heuristic for project scheduling, European Journal of Operational Research, 169, 638-653 https://doi.org/10.1016/j.ejor.2004.08.020
- Demeulemeester, E. L. and Herroelen, W. S. (2002), Project scheduling: A research handbook, Norwell, MA: Kluwer, 8
- Eberhart, R. C., Simpson, P., and Dobbins, R. (1996), Computational Intelligence PC Tools, Academic Press Professional, 212-226
- Erenguc, S. S. and Icmeli-Tukel, O. (1999), Integrating quality as a measure of performance in resourceconstrained project scheduling problems, edited by Jan Weglarz, Project Scheduling: Recent Models, Algorithms and Applications, Kluwer Academic Publishers, USA, 433-450
- Erenguc, S. S., Ahn, T., and Conway, D. G. (2001), The resource constrained project scheduling problem with multiple crashable modes: An exact solution method, Naval Research Logistics, 48, 107-127 https://doi.org/10.1002/1520-6750(200103)48:2<107::AID-NAV1>3.0.CO;2-9
- Glover, F. (1977), Heuristics for integer programming using surrogate constraints, Decision Sciences, 8, 156-166 https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
- Glover, F. and Kochenberge, G. A. (2003), Handbook of Metaheuristics, editors, Kochenberge, Kluwer Academic Publishers
- Herroelen, W., Demeulemeester, E. and De Reyck, B. (1999), A classification scheme for project scheduling, edited by J. Weglarz, Project Scheduling: Recent Models, Algorithms and Applications, Academic Publishers, USA, 1-26
- Hsu, C. C. and Kim, D. S. (2005), A new heuristic for the multi-mode resource investment problem, Journal of the Operational Research Society, 56, 406-413 https://doi.org/10.1057/palgrave.jors.2601827
- Jedrzejowicz, P. (1999), Social learning algorithm as a tool for solving some different scheduling problems, Foundation of Computing and Decision Science, 24(2), 51-66
-
Jedrzejowicz, P. and Ratajczak, E. (2006), Population learning algorithm for the resource-constrained project scheduling, Perspectives in Modern Project Scheduling, edited by J. J
$\acute{o}$ zefowska and J. Weglarz, Springer's International Series -
J
$\acute{o}$ zefowska, J., Mika, M., R$\acute{o}$ zycki, R, Walig$\acute{o}$ ra, G. and Weglarz, J. (1998), Local search metaheuristics for discrete-continuous schedulingproblems, European Journal of Operational Research, 107, 354-370 https://doi.org/10.1016/S0377-2217(97)00345-7 - Keskin, B. B. and Uster, H. (2007), A scatter searchbased heuristic to locate capacitated transhipment points, Computers and Operations Research, 34, 3112-3125 https://doi.org/10.1016/j.cor.2005.11.020
- Kennedy, J. and Eberhart, R. C. (1995), Particle swarm optimization, In Proceedings of the 1995 IEEE International Conference on Neural Networks, Piscataway, New Jersey, IEEE Service Center, 1942-1948
-
Kemmo
$\acute{e}$ Tchomt$\acute{e}$ , S. and Gourgand, M. (2009), Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems, International Journal of Production Economics, doi:10.1016/j.ijpe.2008.03.015 - Klein, R. (2000), Bidirectional planning: improving priority rule-based heuristics for scheduling resourceconstrained projects, European Journal of Operational Research, 127, 619-638 https://doi.org/10.1016/S0377-2217(99)00347-1
- Kolisch, R. and Drexl, A. (1996), Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation, European Journal of Operational Research, 90, 320-333 https://doi.org/10.1016/0377-2217(95)00357-6
- Kolisch, R. and Hartmann, S. (2006), Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling: An update, European Journal of Operational Research, 174, 23-37 https://doi.org/10.1016/j.ejor.2005.01.065
- Kolisch, R. and Sprecher, A. (1996), PSPLIB-A project scheduling problem library, European Journal of Operational Research, 96, 205-216 https://doi.org/10.1016/S0377-2217(96)00170-1
- Li, K. Y. and Willis, R. J. (1992), An iterative scheduling technique for resource-constrained project scheduling, European Journal of Operational Research, 56, 370-379 https://doi.org/10.1016/0377-2217(92)90320-9
- Marti, R., Laguna, M., and Glover, F. (2006), Principle of scatter search, European Journal of Operational Research, 169, 359-372 https://doi.org/10.1016/j.ejor.2004.08.004
- Suganthan, P. N. (1999), Particle swarm optimizer with neighbourhood operator, in Proceedings of the Congress on Evolutionary Computation, (Washington DC, USA), IEEE Service Center, Piscataway, NJ, 1958-1961
- Tormos, P. and Lova, A. (2003), An efficient multi-pass heuristic for project scheduling with constrained resources, International Journal of Production Research, 41(5), 1071-1086 https://doi.org/10.1080/0020754021000033904
- Valls, V., Ballestin, F., and Quintanilla, S. (2005), Justification and RCPSP: A technique that pays, European Journal of Operational Research, 165, 375-386 https://doi.org/10.1016/j.ejor.2004.04.008
- Van Veldhuizen, D. A. (1999), Multiobjective evolutionary algorithms: classifications, analyses, and new Innovations, PhD thesis, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wri-ght-Patterson AFB, Ohio
- Vanhoucke, M., Demeulemeester, E., and Herroelen, W. (2002), Discrete time/cost trade-offs in project scheduling with time-switch constraints, Journal of the Operational Research Society, 53(7), 741-751 https://doi.org/10.1057/palgrave.jors.2601351
- Waligora, G. (2008), Discrete-continuous project scheduling with discounted cash flow-A tabu search approach, Computers and Operations Research, 35, 2141-2153 https://doi.org/10.1016/j.cor.2006.09.022
- Yamashita, D. S., Armentano, V. A., and Laguna M. (2006), Scatter search for project scheduling with resource availability cost, European Journal of Operational Research, 169, 623-637 https://doi.org/10.1016/j.ejor.2004.08.019
- Zitzler, E. and Thiele, L. (1999), Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach, IEEE Transactions on Evolutionary Computation, 3(4), 257-271 https://doi.org/10.1109/4235.797969
- Zhang, H., Li, X., Li, H., and Hung, F. (2005), Particle swarm optimization-based schemes for resourceconstrained project scheduling, Automation in Construction, 14, 393-404 https://doi.org/10.1016/j.autcon.2004.08.006