DOI QR코드

DOI QR Code

Brain Activation Pattern and Functional Connectivity Network during Experimental Design on the Biological Phenomena

  • Published : 2009.05.30

Abstract

The purpose of this study was to investigate brain activation pattern and functional connectivity network during experimental design on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate participants' brain activities during the tasks, 3.0T fMRI system with the block experimental-design was used to measure BOLD signals of their brain and SPM2 software package was applied to analyze the acquired initial image data from the fMRI system. According to the analyzed data, superior, middle and inferior frontal gyrus, superior and inferior parietal lobule, fusiform gyrus, lingual gyrus, and bilateral cerebellum were significantly activated during participants' carrying-out experimental design. The network model was consisting of six nodes (ROIs) and its six connections. These results suggested the notion that the activation and connections of these regions mean that experimental design process couldn't succeed just a memory retrieval process. These results enable the scientific experimental design process to be examined from the cognitive neuroscience perspective, and may be used as a basis for developing a teaching-learning program for scientific experimental design such as brain-based science education curriculum.

Keywords

References

  1. Ansari, D., & Coch, D. (2006). Bridge over troubled waters: education and cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146-151 https://doi.org/10.1016/j.tics.2006.02.007
  2. Blackwood, N., Ffyche, D., Simmons, A., Bentall, R., Murray, R., & Howard, R. (2004). The cerebellum and decision making under uncertainty. Cognitive Brain Research, 20, 46-53 https://doi.org/10.1016/j.cogbrainres.2003.12.009
  3. Borg, W. R., & Gall, M. D. (1989). Educational research: An introduction, 5th Ed. New York, NY: Longman Inc
  4. Buxton, R. B. (2002). Introduction to functional magnetic resonance imaging: Principles and techniques. Cambridge, UK: Cambridge University Press
  5. Caveza, R., & Nyberg, L. (2000). Imaging cognition Ⅱ: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47 https://doi.org/10.1162/08989290051137585
  6. Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage, 14, 1136-1149 https://doi.org/10.1006/nimg.2001.0922
  7. Davis, A (2004). The credentials of brainbased learning. Journal of Philosophy of Education, 38, 21-25 https://doi.org/10.1111/j.0309-8249.2004.00361.x
  8. De Bartolo, P., Mandolesi, L., Federico, F., Foti, F., Cutuli, D., Gelfo, F., Petrosini, L. (2009). Cerebellar involvement in cognitive flexibility. Neurobiology of Learning and Memory, in press https://doi.org/10.1016/j.nlm.2009.03.008
  9. Elliot, R., & Dolan, R. J. (1998). Activation of different anterior cingulate foci in association with hypothesis testing and response selection. Neuroimage, 8, 17-29 https://doi.org/10.1006/nimg.1998.0344
  10. Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D Statistical neuroanatomical model from 305 MRI volumes. IEEE Conference Record, Nuclear Science Symposium and Medical Imaging Conference (San Francisco). P 1813-1817
  11. Fletcher, P. C., & Henson, R. N. (2001). Frontal lobes and human memory: insights from functional neuroimaging. Brain, 124, 849-881 https://doi.org/10.1093/brain/124.5.849
  12. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2, 56 78 https://doi.org/10.1002/hbm.460020107
  13. Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. J. (1993). Functional connectivity: the principal component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism 13, 5 14 https://doi.org/10.1038/jcbfm.1993.4
  14. Friston, K. J., Holmes, A. P., & Worsley, K. J. (1999). How many subjects constitute a study? Neuroimage, 10, 1-5 https://doi.org/10.1006/nimg.1999.0439
  15. Friston, K. J., Holmes, A. P., Poline, J. B., Grasby, P. J., Williams, S. C., Frackowiak, R. S., & Turner, R. (1995). Analysis of fMRI time-series revisited. Neuroimage, 2, 45-53 https://doi.org/10.1006/nimg.1995.1007
  16. Gagne, E. D., Yekovich, F. R., & Ykovich, C. W. (1997). The cognitive psychology of school learning (2nd Ed). New York: Addison-Wesley Longman, Inc
  17. Geake, J., & Cooper, P. (2003). Cognitive neuroscience: Implications for education? Westminster Studies in Education, 26, 7-20 https://doi.org/10.1080/0140672032000070710
  18. Green, A. E., Fugelsang, J. A., Kraemer, D. J. M., Shamosh, N. A., & Dunbar, K. N. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research,1096,125-137 https://doi.org/10.1016/j.brainres.2006.04.024
  19. Hebb, D.O. (1949). The Organization of Behavior: A Neurophysiological Theory. Wiley, New York
  20. Horwitz, B. (2003). The elusive concept of brain connectivity. NeuroImage 19, 466 470 https://doi.org/10.1016/S1053-8119(03)00112-5
  21. Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sunderland. MA: Sinauer associate, Inc
  22. Jeong, J. S. & Kwon, Y. J. (2007). Prospective Science Teachers' Hypothesis-Testing Methods Generated on the Potato Juice Task. The Korean Journal of Biological Education, 35(2), 320-327 https://doi.org/10.15717/bioedu.2007.35.2.320
  23. Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Science, 8(2), 71-78 https://doi.org/10.1016/j.tics.2003.12.002
  24. Klahr, D. & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1-48 https://doi.org/10.1207/s15516709cog1201_1
  25. Klahr, D. & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1-48 https://doi.org/10.1207/s15516709cog1201_1
  26. Koshino, H., Carpenter, P. A., Minshew, N. J., Cherkassky, V. L., Keller, T. A., & Just, M. A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism Neuroimage 24, 810-21 https://doi.org/10.1016/j.neuroimage.2004.09.028
  27. Kroger, J. K. Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cerebral Cortex, 12, 477-485 https://doi.org/10.1093/cercor/12.5.477
  28. Kuhn, D., Amsel, E., & O'Loughlin, M. (1988). The development of scientific thinking skills. New York, NY: Academic Press, Inc
  29. Kwon, Y. J., & Lee, J. K. (2007). Patterns of biologists' and high school students' brain activations in the generation of biological hypotheses: An fMRI study. The Korean Journal of Biological Education, 35(4), 601-610. (in Korean)
  30. Kwon, Y. J., Jeong, J. S., Lee, J. K., Shin, D. H. & Yang, I. H. (2007). Brain Activities during Invention of Hypothesis-testing Methods about Biological Phenomena - An fMRI Study. The Korean Journal of Biological Education, 35(2), 212-224
  31. Kwon, Y. J., Ko, K. T. & Jeong, J. S. (2003). The structure and generation process of deductive scientific-knowledge in the testing of biological hypotheses. The Korean Journal of Biological Education, 31(3), 236-245
  32. Kwon, Y. J., Lee, J. K., Shin, D. H., & Jeong, J. S. (2009). Changes in brain activation induced by the training of hypothesis generation skills: An fMRI study. Brain and Cognition, 69, 391-397 https://doi.org/10.1016/j.bandc.2008.08.032
  33. Kwon, Y., Yang, I., & Chung, W. (2000). An explorative analysis of hypothesis-generation by pre-service science teachers. Journal of Korean Association for Research in Science Education, 20, 29-42
  34. Lawson, A. E. (1995). Science teaching and development of thinking. Belmont, CA: Wadsworth Publishing company
  35. Lee, L., Harrison, L. M., & Mechelli, A. (2003). A report of functional connectivity workshop, Dusseldorf 2002. Neuroimage 19, 457-465 https://doi.org/10.1016/S1053-8119(03)00062-4
  36. Marrelec, R., Bellec, P., Krainik, A., Duffau, H., Pelegrini-Issac, M., Lehericy, H., Benali, H., & Doyon, J. (2008). Regions, systems, and the brain: Hierarchical measures of functional integration in fMRI. Medical Image Analysis, 12, 484-496 https://doi.org/10.1016/j.media.2008.02.002
  37. McPherson, G. R. (2001). Teaching & learning the scientific method. The American Biology Teacher, 63(4), 242-245 https://doi.org/10.1662/0002-7685(2001)063[0242:TLTSM]2.0.CO;2
  38. Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21, 700 .712
  39. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113 https://doi.org/10.1016/0028-3932(71)90067-4
  40. Park, S. H., Ko, K. T., Jeong, J. S. & Kwon, Y. J. (2005). Types of Hypothesis-Testing Methods Generated in Students' Biology Inquiry. Journal of Korean Association for Research in Science Education, 25(2), 230-238
  41. Passingham, R. E., Stephan, K. E., & K tter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3, 606-616 https://doi.org/10.1038/nrn893
  42. Petrides, M. (1995). Functional organization of the human frontal cortex for mnemonic processing. Evidence from neuroimaging studies. Annals of the New York Academy of Sciences, 769, 85-96 https://doi.org/10.1111/j.1749-6632.1995.tb38133.x
  43. Posner, M. I., & Rothbart, M. K. (2005). Influencing brain networks: implications for education. Trends in Cognitive Science, 9(3), 99-103 https://doi.org/10.1016/j.tics.2005.01.007
  44. Robin, N., & Holyoak, K. J. (1995). Relational complexity and the functions of prefrontal cortex. In Gazzaniga, M. S., Bizzi, E., editors. The cognitive neuroscience (1sted.). Cambridge, MA: MIT Press. p987-997
  45. Rosenzweig, M. R., Breedlove, S. M. & Watson, N. V. (2005). Biological psychology: an introduction to behavioral and cognitive neuroscience, 4thEd, Sinauer associate, Inc
  46. Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in cognitive science, 8(9), 418-425 https://doi.org/10.1016/j.tics.2004.07.008
  47. S zcs, D., & Goswami, U. (2007). Educational Neuroscience: Defining a new discipline for the study of mental representations. Mind, Brain and Education, 1(3), 114-127 https://doi.org/10.1111/j.1751-228X.2007.00012.x
  48. Talairach, J., & Tournoux, P. (1988). Co-Planner stereotaxic atlas of the human brain. New York: Thieme Medical publisher, Inc
  49. Thach, W. T. (2007). On the mechanism of cerebellar contributions to cognition. Cerebellum, 6, 163 .167 https://doi.org/10.1080/14734220701373530
  50. Tononi, G., Edelman, G. M., & Sporns, O. (1998). Complexity and coherency: intergrating information in the brain. Trends in Cognitive Sciences, 2(12), 474-484 https://doi.org/10.1016/S1364-6613(98)01259-5
  51. Tsukiura, T., Fujiib, T., Takahashia, T., Xiaoa, R., Inase, M., Iijima, T., Yamadori, A., & Okuda, J. (2001). Neuroanatomical discrimination between manipulating and maintaining processes involved in verbal working memory; a functional MRI study. Cognitive Brain Research, 11, 13-21 https://doi.org/10.1016/S0926-6410(00)00059-8
  52. Varela, F.J., Lachaux, J.-P., Rodriguez, E., & Martinerie, J. (2001). The brain web: phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229 239 https://doi.org/10.1038/35067550
  53. Worsley, K. J,, & Friston, K. J. (1995). Analysis of fMRI time-series revisited-again. Neuroimage 2, 173-181 https://doi.org/10.1006/nimg.1995.1023
  54. Zeki, S., & Shipp, S. (1988). The functional logic of cortical connections. Nature, 335, 311 317 https://doi.org/10.1038/335311a0