DOI QR코드

DOI QR Code

Position-Dependent Cathode Degradation of Large Scale Membrane Electrode Assembly for Direct Methanol Fuel Cell

직접 메탄올 연료전지용 대면적 막-전극 접합체 공기극의 위치별 열화 현상

  • Kim, Soo-Kil (Center for Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Lee, Eun-Sook (Energy Research Center, Hyupjin I&C) ;
  • Kim, Yi-Young (Center for Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Kim, Jang-Mi (Center for Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Joh, Han-Ik (Center for Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Ha, Heung-Yong (Center for Fuel Cell Research, Korea Institute of Science and Technology)
  • 김수길 (한국과학기술연구원 연료전지연구단) ;
  • 이은숙 (협진 I&C 에너지 연구 센터) ;
  • 김이영 (한국과학기술연구원 연료전지연구단) ;
  • 김장미 (한국과학기술연구원 연료전지연구단) ;
  • 조한익 (한국과학기술연구원 연료전지연구단) ;
  • 하흥용 (한국과학기술연구원 연료전지연구단)
  • Published : 2009.05.30

Abstract

With respect to the durability of large scale ($150cm^2$) membrane electrode assembly (MEA) of direct methanol fuel cell (DMFC), degradation phenomena at cathode is monitored and analyzed according to the position on the cathode surface. After constant current mode operation of large scale MEA for 500 hr, the MEA is divided into three parts along the cathode channel; (close to) inlet, middle, and (close to) outlet. The performance of each MEA is tested and it is revealed that the MEA from the cathode outlet of large MEA shows the worst performance. This is due to the catalyst degradation and GDL delamination caused by flooding at cathode outlet of large MEA during the 500 hr operation. Particularly on the catalyst degradation, the loss of electrochemically active surface area (ECSA) of catalyst gets worse along the cathode channel from inlet to outlet, of which the reason is believed to be loss of catalysts by dissolution and migration rather than their agglomeration. The extent of loss in the performance and catalyst degradation has strong relation to the cathode flooding and it is required to develop proper water management techniques and separator channel design to control the flooding.

대면적 ($150cm^2$) 막전극 접합체(MEA)를 사용하는 직접메탄올연료전지(DMFC)의 내구성과 관련하여, 장시간 운전에 따른 공기극의 열화 현상을 공기극면의 위치별로 고찰하였다. 500시간 동안 정전류 조건으로 운전한 대면적 MEA를 공기극 입구, 중간, 출구의 세 부분으로 분할 하여 각각의 MEA에 대한 성능을 관찰한 결과, 대면적 MEA 운전시 홍수 (flooding) 현상이 심했던 공기극 출구 쪽 MEA의 성능 저하가 두드러졌다. 이는 홍수 현상에 의한 촉매의 열화 및 GDL의 박리에 의한 것으로 판단된다. 이 중 특히 촉매의 열화 현상과 관련하여, 출구 방향으로 갈수록 촉매의 전기화학적 활성 면적의 감소가 관찰되나 이는 촉매 입자의 뭉침 (agglomeration) 현상에 의한 것이라기 보다는 촉매 입자의 용해 (dissolution)와 이동 (migration)으로 인한 촉매의 유실 때문인 것으로 판단된다. 전체적인 성능 감소 및 촉매의 열화 정도는 공기극의 홍수와 직접적인 비례관계가 있으며, 이를 해소하기 위한 물관리 기법 및 분리판 디자인의 개선이 요구된다.

Keywords

References

  1. A. A. Kulikovsky, in: T. S. Zhao, K. -D. Kreuer, T. V. Nguyen (Eds.), 'Advances in Fuel Cells', Elsevier, Oxford, 339 (2007)
  2. R. Dillon, S. Srinivasan, A. S. Aric$\grave{o}$, and V. Antonucci, 'International activities in DMFC R&D: status of technologies and potential applications', J. Power Sources 127, 112 (2004) https://doi.org/10.1016/j.jpowsour.2003.09.032
  3. T. V. Reshetenko, H. -T. Kim, H. Lee, M. Jang, and H. -J. Kweon, 'Performance of a direct methanol fuel cell (DMFC) at low temperature: Cathode optimization', J. Power Sources 160, 925 (2006) https://doi.org/10.1016/j.jpowsour.2006.02.058
  4. M. Prasanna, E. A. Cho, H. -J. Kim, I. -H. Oh, T. -H. Lim, and S. -A. Hong, 'Performance of proton-exchange membrane fuel cells using the catalyst-gradient electrode technique', J. Power Sources 166, 53 (2007) https://doi.org/10.1016/j.jpowsour.2006.12.076
  5. W. -M. Yan, C. -Y. Hsueh, C. -Y. Soong, F. Chen, C. -H. Cheng, and S. -C. Mei, 'Effects of fabrication processes and material parameters of GDL on cell performance of PEM fuel cell', Int. J. Hydrogen Energy 32, 4452 (2007) https://doi.org/10.1016/j.ijhydene.2007.02.003
  6. Z. X. Liang, T. S. Zhao, and J. Prabhuram, 'A glue method for fabricating membrane electrode assemblies for direct methanol fuel cells', Electrochim. Acta 51, 6412 (2006) https://doi.org/10.1016/j.electacta.2006.04.048
  7. A. Lindermeir, G. Rosenthal, U. Kunz, and U. Hoffmann, 'On the question of MEA preparation for DMFCs', J. Power Sources 129, 180 (2004) https://doi.org/10.1016/j.jpowsour.2003.11.002
  8. E. G$\ddot{u}$lzow, M. Schulze, N. Wagner, T. Kaz, R. Reissner, G. Steinhilber, and A. Schneider, 'Dry layer preparation and characterization of polymer electrolyte fuel cell components', J. Power Sources 86, 352 (2000) https://doi.org/10.1016/S0378-7753(99)00451-6
  9. J. W. Guo, T. S. Zhao, J. Prabhuram, R. Chen, and C. W. Wong, 'Development of PtRu-Ce$O_{2}$/C anode electrocatalyst for direct methanol fuel cells', J. Power Sources, 156, 345 (2006) https://doi.org/10.1016/j.jpowsour.2005.05.093
  10. H. Kim, S. J. Shin, Y. G. Park, J. Song, and H. T. Kim, 'Determination of DMFC deterioration during long-term operation', J. Power Sources, 160, 440 (2006) https://doi.org/10.1016/j.jpowsour.2005.12.057
  11. W. Schmittinger and A. Vahidi, 'A review of the main parameters influencing long-term performance and durability of PEM fuel cells', J. Power Sources, 180, 1, (2008) https://doi.org/10.1016/j.jpowsour.2008.01.070
  12. E. Antolini, 'Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells', J. Mater. Sci., 38, 2995 (2003) https://doi.org/10.1023/A:1024771618027
  13. M. K. Jeon, K. R. Lee, K. S. Oh, D. S. Hong, J. Y. Won, and S. Li, 'Current density dependence on performance degradation of direct methanol fuel cells', J. Power Sources 158, 1344 (2006) https://doi.org/10.1016/j.jpowsour.2005.10.056
  14. S. Zhang, X. Yuan, H. Wang, W. Merida, H. Zhu, J. Shen, S. Wu, and J. Zhang, 'A review of accelerated stress tests of MEA durability in PEM fuel cells', Int. J. Hydrogen Energy, 34, 388 (2009) https://doi.org/10.1016/j.ijhydene.2008.10.012
  15. J. St-Pierre, D. P. Wilkinson, S. Knights, and M. Bos, 'Relationships between water management, contamination and lifetime degradation in PEFC', J. New Mat. Electrochem. Syst. 3, 99 (2000)
  16. C. Lim and C. Y. Wang, 'Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell', Electrochim. Acta 49, 4149 (2004) https://doi.org/10.1016/j.electacta.2004.04.009
  17. H. Meng and C. -Y. Wang, 'Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells', J. Electrochem. Soc., 152, A1733 (2005) https://doi.org/10.1149/1.1955007
  18. N. Yousfi-Steiner, Ph. Mo\c{ç}ot$\grave{e}$guy, D. Candusso, D. Hissel, A. Hernandez, and A. Aslanides, 'A review on PEM voltage degradation associated with water managements: impacts, influent factors and characterization', J. Power Sources, 183, 260 (2008) https://doi.org/10.1016/j.jpowsour.2008.04.037
  19. J. Le Canut, R. M. Abouatallah, and D. A. Harrington, 'Detection of membrane drying, fuel cell flooding, and anode catalyst poisoning on PEMFC stacks by electrochemical impedance spectroscopy', J. Electrochem. Soc., 153, A857 (2006) https://doi.org/10.1149/1.2179200
  20. D. A. McKay, W. T. Ott, and A. G. Stefanopoulou, 'Modeling, parameter identification, and validation of reactant water dynamics for a fuel cell stack', in: Proceedings of the IMECE, ASMEInt. Mech. Eng. Congress&Exposition, (2005)
  21. D. Natarajan and T. V. Nguyen, 'Spatiotemporal local current density in a PEM fuel cell. Part 1: Air operation and temperature effect', AIChE J. 51 2587, (2005) https://doi.org/10.1002/aic.10545
  22. R. L. Borup, J. R. Davey, F.H. Garzon, D. L. Wood, and M. A. Inbody, 'PEM fuel cell electrocatalyst durability measurements', J. Power Sources 163, 76 (2006) https://doi.org/10.1016/j.jpowsour.2006.03.009
  23. G. -S. Park, C. Pak, Y. -S. Chung, J. -R. Kim, W. S. Jeon, Y. -H. Lee, K. Kim, H. Chang, and D. Seung, 'Decomposition of Pt-Ru anode catalysts in direct methanol fuel cells', J. Power Sources, 176, 484 (2008) https://doi.org/10.1016/j.jpowsour.2007.08.068
  24. P. Piela, C. Eickes, E. Brosha, F. Garzon, and P. Zelenay, 'Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode', J. Electrochem. Soc., 151, A2053 (2004) https://doi.org/10.1149/1.1814472
  25. R. M. Darling and J. P. Meyers, 'Kinetic model of platinum dissolution in PEMFCs', J. Electrochem. Soc., 150, A1523 (2003) https://doi.org/10.1149/1.1613669
  26. R. M. Darling and J. P. Meyers, 'Mathematical model of platinum movement in PEM fuel cells', J. Electrochem. Soc., 152, A242 (2005) https://doi.org/10.1149/1.1836156
  27. J. X. Zhang, B. A. Litteer, W. B. Gu, H. Liu, and H. A. Gasteiger, 'Effect of hydrogen and oxygen partial pressure on Pt precipitation within the membrane of PEMFCs', J. Electrochem. Soc., 154, B1006 (2007) https://doi.org/10.1149/1.2764240
  28. A. Ohma, S. Suga, S. Yamamoto, and K. Shinohara, 'Phenomenon analysis of PEFC for automotive use (1): membrane degradation behavior during OCV hold test', ECS Trans. 3, 519 (2006)
  29. V. Atrazhev, S. F. Burlatsky, N. E. Cipollini, D. A. Condit, and N. Erikhman, 'Aspects of PEMFC degradation', ECS Trans 1, 239 (2006)
  30. K. L. More, R. L. Borup, and K. S. Reeves, 'Identifying contributing degradation phenomena in PEM fuel cell membrane electrode assemblies via electron microscopy', ECS Trans 3, 717 (2006) https://doi.org/10.1149/1.2356192

Cited by

  1. Analysis of the spatially distributed performance degradation of a polymer electrolyte membrane fuel cell stack vol.39, pp.29, 2014, https://doi.org/10.1016/j.ijhydene.2014.03.182