DOI QR코드

DOI QR Code

Role of Alkaline Serine Protease, Asp, in Vibrio alginolyticus Virulence and Regulation of Its Expression by LuxO-LuxR Regulatory System

  • Rui, Haopeng (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Liu, Qin (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Wang, Qiyao (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Ma, Yue (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Liu, Huan (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Shi, Cunbin (Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science) ;
  • Zhang, Yuanxing (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
  • Published : 2009.05.31

Abstract

The alkaline serine protease asp, which was shown to be a virulence factor of Vibrio alginolyticus as a purified protein, was cloned from V. alginolyticus EPGS, a strain recently isolated from moribund Epinephelus coioides in an outbreak of vibriosis in a mariculture farm of Shenzhen. The asp null mutant was constructed by homologous recombination with suicide plasmid pNQ705-1. Compared with the wild-type strain, the asp null mutant exhibited a significant decrease of total extracellular protease activity, and caused a IS-fold decrease in virulence of V. alginolyticus. In our previous study, the luxO and $luxR_{val}$ genes from V. alginolyticus MVP01 were cloned and identified, and the luxO-$luxR_{val}$ regulatory couple was shown to regulate various genes expression, suggesting that it played a central role in the quorum sensing system of V. alginolyticus. In this study, the regulation of the asp gene was analyzed by using RT-PCR and quantitative real-time PCR methods; we proved that its transcription was greatly induced at the late stage of growth and was regulated by a luxO-$luxR_{val}$ regulatory system.

Keywords

References

  1. Aguirre-Guzman, G., H. Ruiz, and F. Ascencio. 2004. A review of extracellular virulence product of Vibrio species important in diseases of cultivated shrimp. Aquac. Res. 35: 1395-1404 https://doi.org/10.1111/j.1365-2109.2004.01165.x
  2. Balebona, M. C., M. J. Andreu, M. A. Bordas, I. Zorrilla, M. A. Morinigo, and J. J. Borrego. 1998. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl. Environ. Microbiol. 64: 4269-4275
  3. Bassler, B. L. and R. Losick. 2006. Bacterially speaking. Cell 125: 237-246 https://doi.org/10.1016/j.cell.2006.04.001
  4. Bassler, B. L., M. Wright, R. E. Showalter, and M. R Silverman. 1993. Intercellular signalling in Vibrio harveyi: Sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9: 773-786 https://doi.org/10.1111/j.1365-2958.1993.tb01737.x
  5. Cai, S. H., Z. H. Wu, J. C. Jian, and Y. S. Lu. 2007. Cloning and expression of the gene encoding an extracellular alkaline serine protease from Vibrio alginolyticus strain HY9901, the causative agent of vibriosis in Lutjanus erythopterus (Bloch). J. Fish Dis. 30: 493-500 https://doi.org/10.1111/j.1365-2761.2007.00835.x
  6. Croxatto, A., V. J. Chalker, J. Lauritz, J. Jass, A. Hardman, P. Williams, M. Camara, and D. L. Milton. 2002. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. J. Bacteriol. 184: 1617-1629 https://doi.org/10.1128/JB.184.6.1617-1629.2002
  7. Croxatto, A., J. Pride, A. Hardman, P. Williams, M. Camara, and D. L. Milton. 2004. A distinctive dual-channel quorumsensing system operates in Vibrio anguillarum. Mol. Microbiol. 52: 1677-1689 https://doi.org/10.1111/j.1365-2958.2004.04083.x
  8. Deane, S. M., F. T. Robb, S. M. Robb, and D. R. Woods. 1989. Nucleotide sequence of the Vibrio alginolyticus calcium-dependent, detergent-resistant alkaline serine exoprotease A. Gene 76: 281-288 https://doi.org/10.1016/0378-1119(89)90168-6
  9. Denkin, S. M. and D. R. Nelson. 1999. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl. Environ. Microbiol. 65: 3555-3560
  10. Dennis, J. J. and G. J. Zylstra. 1998. Plasposons: Modular selfcloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl. Environ. Microbiol. 64:2710-2715
  11. Gomez-Leon, J., L. Villamil, M. L. Lemos, B. Novoa, and A. Figueras. 2005. Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl. Environ. Microbiol. 71: 98-104 https://doi.org/10.1128/AEM.71.1.98-104.2005
  12. Hare, P., T. Scott-Burden, and D. R. Woods. 1983. Characterization of extracellular alkaline proteases and collagenase induction in Vibrio alginolyticus. J. Gen. Microbiol. 129: 1141-1147 https://doi.org/10.1099/00221287-129-4-1141
  13. Jobling, M. G. and R. K. Holmes. 1997. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol. Microbiol. 26: 1023-1034 https://doi.org/10.1046/j.1365-2958.1997.6402011.x
  14. Lee, K. K., S. R. Yu, and P. C. Liu. 1997. Alkaline serine protease is an exotoxin of Vibrio alginolyticus in kuruma prawn, Penaeus japonicus. Curr. Microbiol. 34: 110-117 https://doi.org/10.1007/s002849900153
  15. Liang, W., S. Wang, F. Yu, L. Zhang, G. Qi, Y. Liu, S. Gao, and B. Kan. 2003. Construction and evaluation of a safe, live, oral Vibrio cholerae vaccine candidate, IEM108. Infect. Immun. 71:5498-5504 https://doi.org/10.1128/IAI.71.10.5498-5504.2003
  16. Liu, C. H., W. Cheng, J. P. Hsu, and J. C. Chen. 2004. Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis. Aquat. Organ. 61: 169-174 https://doi.org/10.3354/dao061169
  17. Liu, Q., P. Wang, Y. Ma, and Y. Zhang. 2007. Characterization of the Vibrio alginolyticus fur gene and localization of essential amino acid sites in Fur by site-directed mutagenesis. J. Mol. Microbiol. Biotechnol. 13: 15-21 https://doi.org/10.1159/000103593
  18. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta C}T$ method. Methods 25: 402-408 https://doi.org/10.1006/meth.2001.1262
  19. Long, S., M. A. Mothibeli, F. T. Robb, and D. R. Woods. 1981. Regulation of extracellular alkaline protease activity by histidine in a collagenolytic Vibrio alginolyticus strain. J. Gen. Microbiol. 127: 193-199 https://doi.org/10.1099/00221287-127-1-193
  20. Miyamoto, C. M., P. V. Dunlap, E. G. Ruby, and E. A. Meighen. 2003. LuxO controls luxR expression in Vibrio harveyi: Evidence for a common regulatory mechanism in Vibrio. Mol. Microbiol. 48: 537-548 https://doi.org/10.1046/j.1365-2958.2003.03453.x
  21. Park, K. S., T. Ono, M. Rokuda, M. H. Jang, K. Okada, T. Iida, and T. Honda. 2004. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72: 6659-6665 https://doi.org/10.1128/IAI.72.11.6659-6665.2004
  22. Reed, L. J. and H. Muench 1938. A simple method of estimating fifty percent end points. Am. J. Hyg. 27: 493-497
  23. Rui, H., Q. Liu, Y. Ma, Q. Wang, and Y. Zhang. 2008. Roles of LuxR in regulating extracellular alkaline serine protease A, extracellular polysaccharide and mobility of Vibrio alginolyticus. FEMS Microbiol. Lett. 285: 155-162 https://doi.org/10.1111/j.1574-6968.2008.01185.x
  24. Sambrook, J., E. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed, Cold Spring Harbor Laboratory, Press Cold Spring Harbor, New York, U.S.A
  25. Shao, C. P. and L. I. Hor. 2001. Regulation of metalloprotease gene expression in Vibrio vulnificus by a Vibrio harveyi LuxR homologue. J. Bacteriol. 183: 1369-1375 https://doi.org/10.1128/JB.183.4.1369-1375.2001
  26. Storey, D. G., E. E. Ujack, H. R. Rabin, and I. Mitchell. 1998. Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect. Immun. 66: 2521-2528
  27. Sultan, Z., S. Miyoshi, and S. Shinoda. 2006. Presence of LuxS/ AI-2 based quorum-sensing system in Vibrio mimicus: LuxO controls protease activity. Microbiol. Immunol. 50: 407-417 https://doi.org/10.1111/j.1348-0421.2006.tb03808.x
  28. Surette, M. G., M. B. Miller, and B. L. Bassler. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. U.S.A. 96: 1639-1644 https://doi.org/10.1073/pnas.96.4.1639
  29. Swift, S., M. J. Lynch, L. Fish, D. F. Kirke, J. M. Tomas, G. S. Stewart, and P. Williams. 1999. Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect. Immun. 67: 5192-5199
  30. Takeuchi, H., Y. Shibano, K. Morihara, J. Fukushima, S. Inami, B. Keil, A. M. Gilles, S. Kawamoto, and K. Okuda. 1992. Structural gene and complete amino acid sequence of Vibrio alginolyticus collagenase. Biochem. J. 281: 703-708 https://doi.org/10.1042/bj2810703
  31. Wang, Q., Q. Liu, Y. Ma, H. Rui, and Y. Zhang. 2007. LuxO controls extracellular protease, haemolytic activities and siderophore production in fish pathogen Vibrio alginolyticus. J. Appl. Microbiol. 103: 1525-1534 https://doi.org/10.1111/j.1365-2672.2007.03380.x
  32. Waters, C. M. and B. L. Bassler. 2005. Quorum sensing: Cellto- cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319-346 https://doi.org/10.1146/annurev.cellbio.21.012704.131001
  33. Ye, J., Y. Ma, Q. Liu, D. L. Zhao, Q. Y. Wang, and Y. X. Zhang. 2008. Regulation of Vibrio alginolyticus virulence by the LuxS quorum-sensing system. J. Fish Dis. 31: 161-169 https://doi.org/10.1111/j.1365-2761.2007.00882.x
  34. Zhu, J., M. B. Miller, R. E. Vance, M. Dziejman, B. L. Bassler, and J. J. Mekalanos. 2002. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. U.S.A. 99: 3129-3134 https://doi.org/10.1073/pnas.052694299

Cited by

  1. Vibrio alginolyticus MviN is a LuxO-regulated Protein and Affects Cytotoxicity Towards Epithelioma Papulosum Cyprini (EPC) Cells vol.20, pp.2, 2010, https://doi.org/10.4014/jmb.0904.04031
  2. Distribution of Vibrio alginolyticus -like species in Shenzhen coastal waters, China vol.42, pp.3, 2009, https://doi.org/10.1590/s1517-83822011000300007
  3. Functional Characterization of Vibrio alginolyticus Twin-Arginine Translocation System: Its Roles in Biofilm Formation, Extracellular Protease Activity, and Virulence Towards Fish vol.62, pp.4, 2009, https://doi.org/10.1007/s00284-010-9844-6
  4. Roles of Hfq in the stress adaptation and virulence in fish pathogen Vibrio alginolyticus and its potential application as a target for live attenuated vaccine vol.91, pp.2, 2009, https://doi.org/10.1007/s00253-011-3286-3
  5. Secreted glyceraldehyde‐3‐phosphate dehydrogenase as a broad spectrum vaccine candidate against microbial infection in aquaculture vol.54, pp.1, 2009, https://doi.org/10.1111/j.1472-765x.2011.03164.x
  6. Investigation of the roles of T6SS genes in motility, biofilm formation, and extracellular protease Asp production in Vibrio alginolyticus with modified Gateway‐compatible plasmids vol.55, pp.1, 2012, https://doi.org/10.1111/j.1472-765x.2012.03263.x
  7. Characterization of role of the toxR gene in the physiology and pathogenicity of Vibrio alginolyticus vol.101, pp.2, 2009, https://doi.org/10.1007/s10482-011-9632-8
  8. Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I (T6SSVA1) in fish pathogen Vibrio alginolyticus vol.194, pp.5, 2009, https://doi.org/10.1007/s00203-011-0780-z
  9. Characterization of a new quorum sensing regulator luxT and its roles in the extracellular protease production, motility, and virulence in fish pathogen Vibrio alginolyticus vol.194, pp.6, 2009, https://doi.org/10.1007/s00203-011-0774-x
  10. Fitness Factors in Vibrios: a Mini-review vol.65, pp.4, 2009, https://doi.org/10.1007/s00248-012-0168-x
  11. Regulation of Spoilage‐Related Activities of Shewanella putrefaciens and Shewanella baltica by an Autoinducer‐2 Analogue, (Z)‐5‐(Bromomethylene)furan‐2(5H)‐One vol.39, pp.6, 2015, https://doi.org/10.1111/jfpp.12281
  12. An immunochromatographic test strip for rapid detection of fish pathogen Edwardsiella tarda vol.2, pp.None, 2015, https://doi.org/10.1186/s40643-015-0047-7
  13. A σ E -Mediated Temperature Gauge Controls a Switch from LuxR-Mediated Virulence Gene Expression to Thermal Stress Adaptation in Vibrio alginolyticus vol.12, pp.6, 2009, https://doi.org/10.1371/journal.ppat.1005645
  14. A Modified Quantum Dot-Based Dot Blot Assay for Rapid Detection of Fish Pathogen Vibrio anguillarum vol.26, pp.8, 2009, https://doi.org/10.4014/jmb.1602.02050
  15. Chromatin Immunoprecipitation Sequencing Technology Reveals Global Regulatory Roles of Low-Cell-Density Quorum-Sensing Regulator AphA in the Pathogen Vibrio alginolyticus vol.198, pp.21, 2009, https://doi.org/10.1128/jb.00520-16
  16. Impact of microbial proteases on biotechnological industries vol.33, pp.2, 2017, https://doi.org/10.1080/02648725.2017.1408256
  17. Sensitivity improvement of rapid Vibrio harveyi detection with an enhanced chemiluminescent‐based dot blot vol.65, pp.3, 2009, https://doi.org/10.1111/lam.12763
  18. Expression of Collagenase is Regulated by the VarS/VarA Two-Component Regulatory System in Vibrio alginolyticus vol.251, pp.1, 2009, https://doi.org/10.1007/s00232-017-9991-9
  19. T3SS effectors in Vibrios: Homology in sequence, diversity in biological functions? vol.9, pp.1, 2009, https://doi.org/10.1080/21505594.2018.1435965
  20. The extracellular proteases produced by Vibrio parahaemolyticus vol.34, pp.5, 2009, https://doi.org/10.1007/s11274-018-2453-4
  21. VqsA, a Novel LysR-Type Transcriptional Regulator, Coordinates Quorum Sensing (QS) and Is Controlled by QS To Regulate Virulence in the Pathogen Vibrio alginolyticus vol.84, pp.12, 2009, https://doi.org/10.1128/aem.00444-18
  22. Mechanisms underlying the virulence regulation of new Vibrio alginolyticus ncRNA Vvrr1 with a comparative proteomic analysis vol.8, pp.1, 2009, https://doi.org/10.1080/22221751.2019.1687261
  23. Alternative Sigma Factor RpoX Is a Part of the RpoE Regulon and Plays Distinct Roles in Stress Responses, Motility, Biofilm Formation, and Hemolytic Activities in the Marine Pathogen Vibrio alginolyti vol.85, pp.14, 2009, https://doi.org/10.1128/aem.00234-19
  24. Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production vol.7, pp.10, 2009, https://doi.org/10.3390/microorganisms7100387
  25. Quorum sensing in Aliivibrio wodanis 06/09/139 and its role in controlling various phenotypic traits vol.9, pp.None, 2009, https://doi.org/10.7717/peerj.11980
  26. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review vol.61, pp.11, 2009, https://doi.org/10.1080/10408398.2020.1767031
  27. Vanillic acid combats Vibrio alginolyticus by cell membrane damage and biofilm reduction vol.44, pp.11, 2009, https://doi.org/10.1111/jfd.13498