DOI QR코드

DOI QR Code

Expressional Comparison of Glucose Cotransporter Isoforms in the Rat Epididymis During Postnatal Development

  • Lee, Dong-Mok (School of Biotechnology, Yeungnam University) ;
  • Seo, Hee-Jung (Department of Biochemistry and Molecular Biology and Medical Sciences Research Institute, Eulji University) ;
  • Son, Chan-Wok (Department of Biochemistry and Molecular Biology and Medical Sciences Research Institute, Eulji University) ;
  • Lee, Yong-Ho (Department of Biomedical Science, Catholic University of Daegu) ;
  • Choi, In-Ho (School of Biotechnology, Yeungnam University) ;
  • Chun, Tae-Hoon (School of Life Sciences and Biotechnology, Korea University) ;
  • Cheon, Yong-Pil (School of Life Sciences and Chemistry, Institute of Basic Sciences, Sungshin Women's University) ;
  • Lee, Ki-Ho (Department of Biochemistry and Molecular Biology and Medical Sciences Research Institute, Eulji University)
  • Received : 2009.10.28
  • Accepted : 2009.12.01
  • Published : 2009.12.01

Abstract

Glucose is a major source of metabolic fuel and lipid and protein syntheses. Transport of glucose into the cell is regulated by an action of glucose transport.associated transporters, especially solute carriers 2A (Slc2a, protein symbol GLUT). The present study was focused on examination of mRNA expression of various Slc2a isoforms in the epididymis during postnatal development. Total RNAs isolated from different epididymal segments (caput, corpus, and caudal epididymis) were utilized for real-time polymerase chain reaction analyses. Results showed that Slc2a 1, 3, 4, 5, and 8 were expressed in the entire epididymal regions. In addition, the abundance of these Slc2a isoforms' transcripts was different within each epididymal regions. Moreover, the present study showed differential expression of these Slc2a isoforms among different epididymal segments according to postnatal ages. The current study suggests that glucose transport in the epididymis via various Slc2a isoforms would be necessary for maintenance of the epididymal functions.

Keywords

References

  1. Abe, H., Morimatsu, M., Nikami, H., Miyashige, T. and Saito, M. 1997. Molecular cloning and mRNA expression of the bovine insulin-responsive glucose transporter (GLUT4). J. Anim. Sci. 75:182-188. https://doi.org/10.2527/1997.751182x
  2. Burant, C. F., Takeda, J., Brot-Laroche, E., Bell, G. I. and Davidson, N. O. 1992. Fructose transporter in human spermatozoa and small intestine is GLUT5. J. Biol. Chem. 267:14523-14526.
  3. Carosa, E., Radico, C., Giansante, N., Rossi, S., D’Adamo, F., DiStasi, S. M., Lenzi, A. and Jannini, E. A. 2005. Ontogenetic profile and thyroid hormone regulation of type-1 and type-8 glucose transporters in rat Sertoli cells. Int. J. Androl. 28:99-106. https://doi.org/10.1111/j.1365-2605.2005.00516.x
  4. Chen, Y., Nagpal, M. L. and Lin, T. 2003. Expression and regulation of glucose transporter 8 in rat Leydig cells. J Endocrinol. 179:63-72. https://doi.org/10.1677/joe.0.1790063
  5. Cornwall, G. A. 2009. New insights into epididymal biology and function. Hum. Reprod. Update. 15:213-227. https://doi.org/10.1093/humupd/dmn055
  6. Corpe, C. P., Bovelander, F. J., Munoz, C. M., Hoekstra, J. H., Simpson, I. A., Kwon, O., Levine, M. and Burant, C. F. 2002. Cloning and functional characterization of the mouse fructose transporter, GLUT5. Biochim. Biophys. Acta. 1576:191-197. https://doi.org/10.1016/S0167-4781(02)00284-1
  7. Cosentino, M. J. and Cockett, A. T. 1986. Structure and function of the epididymis. Urol. Res. 14:229-240.
  8. Davidson, N. O., Hausman, A. M., Ifkovits, C. A., Buse, J. B., Gould, G. W., Burant, C. F. and Bell, G. I. 1992. Human intestinal glucose transporter expression and localization of GLUT5. Am. J. Physiol. 262:C795-C800. https://doi.org/10.1152/ajpcell.1992.262.3.C795
  9. Del Rio, A. G., Blanco, A. M., Pignataro, O., Niepomniszcze, H., Juvenal, G. and Pisarev, M. A. 2000. High-affinity binding of T3 to epididymis nuclei. Arch. Androl. 44:187-191. https://doi.org/10.1080/014850100262155
  10. Doege, H., Sch?mann, A., Bahrenberg, G., Brauers, A. and Joost, H. G. 2000. GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J. Biol. Chem. 275:16275-16280. https://doi.org/10.1074/jbc.275.21.16275
  11. Duhlmeier, R., Hacker, A., Widdel, W., Von Engelhardt, W. and Sallmann, H. P. 2005. Mechanisms of insulin-dependent glucose transport into porcine and bovine skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289:R187-197. https://doi.org/10.1152/ajpregu.00502.2004
  12. Galardo, M. N., Riera, M. F., Pellizzari, E. H., Chemes, H. E., Venara, M. C., Cigorraga, S. B. and Meroni, S. B. 2008. Regulation of expression of Sertoli cell glucose transporters 1 and 3 by FSH, IL1 beta, and bFGF at two different timepoints in pubertal development. Cell Tissue Res. 334:295-304. https://doi.org/10.1007/s00441-008-0656-y
  13. Gonzalez, E. and McGraw, T. E. 2006. Insulin signaling diverges into Akt-dependent and.independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the plasma membrane. Mol. Biol. Cell. 17:4484-4493. https://doi.org/10.1091/mbc.E06-07-0585
  14. Haber, R. S., Weinstein, S. P., O'Boyle, E. and Morgello, S. 1993. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology. 132:2538-2543. https://doi.org/10.1210/en.132.6.2538
  15. Kajihara, T., Okagaki, R. and Ishihara, O. 2006. LPS-induced transient testicular dysfunction accompanied by apoptosis of testicular germ cells in mice. Med. Mol. Morphol. 39:203-208. https://doi.org/10.1007/s00795-006-0334-7
  16. Kujala, M., Hihnala, S., Tienari, J., Kaunisto, K., Hastbacka, J., Holmberg, C., Kere, J. and Hoglund, P. 2007. Expression of ion transport-associated proteins in human efferent and epididymal ducts. Reproduction. 133:775-784. https://doi.org/10.1530/rep.1.00964
  17. Lei, Z. M., Zou, W., Mishra, S., Li, X. and Rao, C. V. 2003. Epididymal phenotype in luteinizing hormone receptor knockout animals and its response to testosterone replacement therapy. Biol. Reprod. 68:888-895. https://doi.org/10.1095/biolreprod.102.009738
  18. Li, Q., Manolescu, A., Ritzel, M., Yao, S., Slugoski, M., Young, J. D., Chen, X. Z. and Cheeseman, C. I. 2004. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G236-242. https://doi.org/10.1152/ajpgi.00396.2003
  19. Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E. and Lodish, H. F. 1985. Sequence and structure of a human glucose transporter. Science. 229:941-945. https://doi.org/10.1126/science.3839598
  20. Nualart, F., Los Angeles Garcia, M., Medina, R. A. and Owen, G. I. 2009. Glucose transporters in sex steroid hormone related cancer. Curr. Vasc. Pharmacol. [Epub ahead of print].
  21. Pietrement, C., Sun-Wada, G. H., Silva, N. D., McKee, M., Marshansky, V., Brown, D., Futai, M. and Breton, S. 2006. Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol. Reprod. 74:185-194. https://doi.org/10.1095/biolreprod.105.043752
  22. Rand, E. B., Depaoli, A. M., Davidson, N. O., Bell, G. I. and Burant, C. F. 1993. Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am. J. Physiol. 264:G1169-G1176.
  23. Schurmann, A., Axer, H., Scheepers, A., Doege, H. and Joost, H.-G. 2002. The glucose transport facilitator GLUT8 is predominantly associated with the acrosomal region of mature spermatozoa. Cell. Tissue Res. 307:237-242. https://doi.org/10.1007/s00441-001-0499-2
  24. Setty, B. S. and Jehan, Q. 1977. Functional maturation of the epididymis in the rat. J. Reprod. Fert. 49:317-322. https://doi.org/10.1530/jrf.0.0490317
  25. Shepherd, P. R., Gould, G. W., Colville, C. A., McCoid, S. C., Gibbs, E. M. and Kahn, B. B. 1992. Distribution of GLUT3 glucose transporter protein in human tissues. Biochem. Biophys. Res. Commun. 188:149-154. https://doi.org/10.1016/0006-291X(92)92362-2
  26. Stephens, J. M., Bagby, G. J., Pekala, P. H., Shepherd, R. E., Spitzer, J. J. and Lang, C. H. 1992. Differential regulation of glucose transporter gene expression in adipose tissue or septic rats. Biochem. Biophys. Res. Commun. 183:417-422. https://doi.org/10.1016/0006-291X(92)90497-9
  27. Ulisse, S., Jannini, E. A., Pepe, M., De Matteis, S. and D’Armiento, M. 1992. Thyroid hormone stimulates glucose transport and GLUT1 mRNA in rat Sertoli cells. Mol. Cell. Endocrinol. 87:131-137. https://doi.org/10.1016/0303-7207(92)90241-W
  28. Widdas, W. F. 1988. Old and new concepts of the membrane transport for glucose in cells. Biochem. Biophys. Acta. 947: 385-404. https://doi.org/10.1016/0304-4157(88)90001-9
  29. Wood, I. S. and Trayhurn, P. 2003. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr. 89:3-9.
  30. Wright, E.M. and Turk, E. M. 2004. The sodium/glucose cotransport family SLC5. Pflugers Arch. 447:510-518. https://doi.org/10.1007/s00424-003-1063-6
  31. Yamashita, S. 2004. Localization of estrogen and androgen receptor in male reproductive tissues of mice and rats. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 279:768-778.
  32. Zhao, F.-Q., Glimm, D. R. and Kennelly, J. J. 1993. Distribution of mammalian facultative glucose transporter messenger RNA in bovine tissues. Int. J. Biochem. 25:1897-1903. https://doi.org/10.1016/0020-711X(88)90322-9
  33. Zhao, F.-Q. and Keating, A. F. 2007. Functional properties and genomics of glucose transporters. Curr. Genomics. 8:113-128. https://doi.org/10.2174/138920207780368187
  34. Zhao, F.-Q., Miller, P. J., Wall, E. H., Zheng, Y. C., Neville, M. C. and McFadden, T. B. 2004. Bovine glucose transporter GLUT8: cloning, expression, and developmental regulation in mammary gland. Biochim, Biophys. Acta. 1680:103-113. https://doi.org/10.1016/j.bbaexp.2004.09.001